Меню Рубрики

Как правильно написать электронную формулу

Составляем электронные формулы элементов без всяких расчетов(алгоритмы советской школы).

Здравствуйте, уважаемые читатели!

Обучение школьников составлению электронных формул химических элементов в большинстве случае производится в соответствии со следующим алгоритмом: (https://www.calc.ru/Elektronnaya-Formula-Elementa.html).

2. По номеру периода, в котором расположен элемент, определите число энергетических уровней; число электронов на последнем электронном уровне соответствует номеру группы.

3. Уровни разбить на подуровни и орбитали и заполнить их электронами в соответствии с правилами заполнения орбиталей :

Необходимо помнить, что на первом уровне находится максимум 2 электрона 1s2, на втором – максимум 8 (два s и шесть р: 2s22p6), на третьем – максимум 18 ( два s, шесть p, и десять d: 3s2 3p6 3d10).

  • Главное квантовое число n должно быть минимально.
  • Первым заполняется s-подуровень, затем р-, d- b f-подуровни.
  • Электроны заполняют орбитали в порядке возрастания энергии орбиталей (правило Клечковского).
  • В пределах подуровня электроны сначала по одному занимают свободные орбитали, и только после этого образуют пары (правило Хунда).
  • На одной орбитали не может быть больше двух электронов (принцип Паули).

Как правило, использование этого алгоритма подразумевает распределение электронов по уровням и подуровням с помощью расчетов , т. е на основе постоянного сравнения количества уже учтенных в электронной формуле электронов с общим количеством электронов в атомов. Использование же таблицы Менделеева при этом минимально.

Это можно проследить на множестве обучающих видеоматериалов, в которых авторы обращаются к ТМ практически только за порядковым номером элемента:

или используют ее раскраску:

Проанализировав более 20 видеоматериалов на данную тему, я смогла найти только один, в котором в качестве основы составления формул использовались не расчеты и не искусственные подсказки в виде разной раскраски знаков элементов, а сама структура таблицы Менделеева (10-12 минуты видео):

Преподавание — творческий процесс, каждый преподаватель выбирает те приемы и алгоритмы, которые близки его психологическим характеристикам. Сказывается также и первоначальное знакомство с данным материалом на уроках химии, когда сам преподаватель был школьником.

Ни в коей мере не претендуя на навязывание алгоритмов, по которым работаю, хочу познакомить (или напомнить), как составлять полные и сокращенные электронные формулы с помощью таблицы Менделеева. С данным приемом я познакомилась на уроках моей мамы в далекие советские годы , а затем — на лекциях и семинарах по неорганике в МИТХТ. Об эффективности этого приема может свидетельствовать то, что электронные формулы элементов четырех периодов легко составляли даже те мои одноклассники, которые с трудом могли посчитать молярную массу.

На приведенном ниже видео я попыталась показать, как, используя 2 источника — алгоритм заполнения электронами орбиталей и таблицу Менделеева, можно легко составлять полные и сокращенные электронные формулы любого химического элемента. Заранее прошу прощения за технические и терминологические ляпы (например, «элемент» вместо «атом»), а также за «жаргонные» словечки (вроде «прощелкать по клеткам»). Дело в том, что это видео -мой первый опыт в создании видеоматериалов.

Источник статьи: http://zen.yandex.ru/media/id/5d2de3c4bc228f00aec36bc0/sostavliaem-elektronnye-formuly-elementov-bez-vsiakih-raschetovalgoritmy-sovetskoi-shkoly-5d70b5f57cccba00adae76df

Как написать электронные формулы атомов?

Атом – электронейтральная система, состоящая из положительно заряженного ядра и отрицательно заряженных электронов. Электроны располагаются в атоме, образуя энергетические уровни и подуровни.

Электронная формула атома – это распределение электронов в атоме по энергетическим уровням и подуровням в соответствии с принципом наименьшей энергии (Клечковского), принципом Паули, правилом Гунда.

Электронные формулы атомов

Состояние электрона в атоме описывается с помощью квантово-механической модели – электронного облака, плотность соответствующих участков которого пропорциональна вероятности нахождения электрона. Обычно под электронным облаком понимают область околоядерного пространства, которая охватывает примерно 90% электронного облака. Эта область пространства называется также орбиталью.

Атомные орбитали образуют энергетический подуровень. Орбиталям и подуровням присвоены буквенные обозначения. Каждый подуровень имеет определенное число атомных орбиталей. Если атомную орбиталь изобразить в виде магнитно-квантовой ячейки, то атомные орбитали, находящиеся на подуровнях, можно представить следующим образом:

энергетический подуровень s p d f
атомные орбитали .

На каждой атомной орбитали могут находиться одновременно не более двух электронов, различающихся спином (принцип Паули). Это различие обозначается стрелками ¯­.

Зная, что на s-подуровне одна s-орбиталь, на р-подуровне три р-орбитали, на d-подуровне пять d-орбиталей, на f-подуровне семь f-орбиталей, можно найти максимальное количество электронов на каждом подуровне и уровне.

Так, на s-подуровне, начиная с первого энергетического уровня, 2 электрона; на р-подуровне, начиная со второго энергетического уровня, 6 электронов; на d-подуровне, начиная с третьего энергетического уровня, 10 электронов; на f-подуровне, начиная с четвертого энергетического уровня, 14 электронов. Электроны на s-, p-, d-, f-подуровнях называются соответственно s-, р-, d-, f-электронами.

Согласно принципу наименьшей энергии, последовательное заполнение энергетических подуровней электронами происходит таким образом, что каждый электрон в атоме занимает подуровень с наиболее низкой энергией, отвечающей его прочной связи с ядром. Изменение энергии подуровней может быть представлено в виде ряда Клечковского или шкалы энергии:

Электронная формула химических элементов

Наиболее часто электронные формулы записывают для атомов в основном или возбужденном состоянии и для ионов.

Существует несколько правил, которые необходимо учитывать при составлении электронной формулы атома химического элемента. Это принцип Паули, правила Клечковского или правило Хунда.

При составление электронной формулы следует учитывать, что номер периода химического элемента определяет число энергетических уровней (оболочек) в атоме, а его порядковый номер количество электронов.

Согласно правилу Клечковского, заполнение энергетических уровней происходит в порядке возрастания суммы главного и орбитального квантовых чисел (n + l), а при равных значениях этой суммы – в порядке возрастания n:

1s Читайте также: Какие существуют формулы логарифмов?

При заполнение электронами энергетических подуровней также необходимо соблюдать правило Хунда: в данном подуровне электроны стремятся занять энергетические состояния таким образом, чтобы суммарный спин был максимальным (это наиболее наглядно отражается при составлении электронно-графических формул).

Источник статьи: http://rgiufa.ru/matematika-fizika-himiya/kak-napisat-elektronnye-formuly-atomov.html

Электронная формула элемента.

Алгоритм составления электронной формулы элемента:

2. По номеру периода, в котором расположен элемент, определите число энергетических уровней; число электронов на последнем электронном уровне соответствует номеру группы.

3. Уровни разбить на подуровни и орбитали и заполнить их электронами в соответствии с правилами заполнения орбиталей:

Необходимо помнить, что на первом уровне находится максимум 2 электрона 1s 2 , на втором – максимум 8 (два s и шесть р: 2s 2 2p 6 ), на третьем – максимум 18 ( два s, шесть p, и десять d: 3s 2 3p 6 3d 10 ).

  • Главное квантовое число n должно быть минимально.
  • Первым заполняется s-подуровень, затем р-, d- b f-подуровни.
  • Электроны заполняют орбитали в порядке возрастания энергии орбиталей (правило Клечковского).
  • В пределах подуровня электроны сначала по одному занимают свободные орбитали, и только после этого образуют пары (правило Хунда).
  • На одной орбитали не может быть больше двух электронов (принцип Паули).

1. Составим электронную формулу азота. В периодической таблице азот находится под №7.

Энергетическая диаграмма азота.

2. Составим электронную формулу аргона. В периодической таблице аргон находится под №18.

Энергетическая диаграмма аргона.

3. Составим электронную формулу хрома. В периодической таблице хром находится под №24.

Энергетическая диаграмма цинка.

4. Составим электронную формулу цинка. В периодической таблице цинк находится под №30.

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10

Обратим внимание, что часть электронной формулы, а именно 1s 2 2s 2 2p 6 3s 2 3p 6 – это электронная формула аргона.

Электронную формулу цинка можно представить в виде:

Источник статьи: http://www.calc.ru/Elektronnaya-Formula-Elementa.html

Как написать электронную конфигурацию атома любого элемента?

Процесс написания электронной конфигурации атома любого элемента можно разбить в несколько этапов:

  1. Определение числа электронов
  2. Размещение электронов по уровням, подуровням и квантовым ячейкам в соответствии с нижеуказанным правилам.

Первое правило — принцип Паули.

Принцип Паули гласит, что в атоме не может быть двух электронов, для которых одинаковы значения всех четырех квантовых чисел. Они должны находиться в различных квантовых состояниях и отличаться хотя бы одним из четырех квантовых чисел.

Таким образом, с помощью математических преобразований было выяснено, что максимальное число электронов на s-, p-, d-. f- подуровнях соответственно равно 2,6, 10 и 14 независимо от значения n ( где n — характеризует энергетический уровень).

Второе правило — принцип наименьшей энергии.

Этот принцип заключается в том, что размещение электронов по уровням и подуровням должно отвечать энергии наибольшей связи их с ядрами. В связи с этим была найдена следующая экспериментальная последовательность:

1s — 2s — 2p — 3s — 3p — 4s — 3d — 4p — 5s — 4d — 5p — 6s — (5d^2) — 4f — 5d — 6p — 7s — (6d^2) — 5f — 6d — 7p

Третье правило — правило Гунда.

Этому правилу подчиняется размещение электронов по квантовым ячейкам.

Согласно ему, электроны в пределах подуровня (s-, p-, d-, f-) располагаются сначала каждый в отдельной квантовой ячейки в виде неспареных электронов.

Рассмотрим на примере атома хлора.

1 шаг. Открываем таблицу Менделеева и смотрим порядковый номер элемента. В нашем случае порядковый номер равен 17ти. Значит, атом хлора содержит 17 электронов.

2 шаг. Глядя на вышеописанные правила записываем электронную конфигурацию, при этом помним, что в подуровне s максимум мб 2 электрона, в подуровне p — 6.

Значит, у нас максимально заполняются подуровни 1s (два электрона), 2s (два электрона), 2p (6 электронов), 3s (два электрона).

Складывая все электроны (2+2+6+2), которые мы разместили по подуровням, получаем значение 12.

Для того, чтобы нам заполнить оставшийся 3p уровень, мы от общего кол-ва электронов (17) отнимаем полученное выше значение 12. Итого мы получаем, что надо разместить оставшиеся пять электронов на подуровне 3p, а это значит, что на 3p уровне 5 электронов (17-12=5).

Таким образом, электронная конфигурация имеет вид:

3 шаг. Далее рисуется графически электронная конфигурация.

Ниже всего расположен квадрат 1s подуровня. И дальше в порядке увелечения по принципу сохранения энергии. В соответствии с правилом Гунда, в ячейке расположена два электрона с противоположными спинами (смотрящие в разные стороны стрелочки). Подобным образом заполняем все остальные ячейки.

Дойдя до подуровня 3p, мы помним, что у нас 5 электронов. Поэтому сначала рисуем стрелочки вверх, т.к. 3 ячейки, значит и 3 стрелочки вверх, а затем рисуем стрелочки вниз. Итого получаем, что в последней ячейке у нас есть один неспареный электрон.

С помощью электронной конфигурации мы можем определить все возможные степени окисления того или иного элемента.

Так, например, глядя на выше описанную электронную конфигурацию, мы видим, что у атома хлора есть один неспаренный электрон. Это значит, что для него характерны степени окисление +1, -1 и 0.

Если вам необходимо написать электронную конфигурацию Cl- (хлор минус), то вы прибавляете 1 электрон у уже имеющимся на 3p подуровне. Итого получаете — 1s2 2s2 2p6 3s2 3p6

Для хлор плюс наоборот отнимаете один электрон.

Также не стоит забыть, что атомы отличаются возбужденной и невозбужденной электронной конфигурацией, что обязательно указывается в виде символа *.

В случае, если у нас Cl*, то один спаренный электрон на подуровне 3p переходит на уровень 3d, таким образом получаем три неспаренных электрона, что свидетельствуют о возможной степени окисления +3.

У нас остаются еще неспаренные элетроны, это значит, что может существовать и Cl**, в таком случае с еще одной ячейки 3p перебегает электрон на 3d, таким образом возможна степень окисления хлора +5.

Также может перебегать и электрон с уровня 3s, в этом же случае степень оксиления будет равна +7.

Сколько неспаренных электронов у марганца?

Что такое неспаренные электроны? 😊
☘️Это электроны-одиночки. Они лежат одни на атомных орбиталях (в квадратиках), и нет рядом электрона-товарища😥
1️⃣ Посчитаем, сколько электронов у атома марганца? Mn в таблице Менделеева находится под номером 25,значит, у него 25 электронов😊 Всё просто
2️⃣Теперь расположим электроны по орбитали, и получится вот такая штука🤯

Электронов-одиночек у марганца 5,на 3d подуровне. Значит, у него 5 неспаренных электронов🙂

Как изменяется радиус атома в таблице менделеева?

☘️При движении по периоду слева направо радиус атома уменьшается. Почему?
🔸Число электронов на внешнем уровне возрастает
P. S. Число электронов равно номеру элемента в таблице Менделеева🙂
🔸Много электронов сильно давят на атомное ядро ➡️атом сжимается➡️радиус уменьшается
☘️По группе сверху вниз радиус возрастает, т. к.
🔸Возрастает число уровней, значит, для электронов больше свободного пространства в атоме
🔸Электроны всё меньше и меньше давят на ядро ➡️радиус увеличивается🙂

Могут ли или существуют ли вещества во Вселенной, которых нет в таблице Менделеева?

Безусловно. Потому что в таблице Менделеева вообще нет веществ, там только элементы.

Могут ли быть элементы, которых нет в таблице Менделеева? Тоже да. Можно делать атомы не только из протонов, нейтронов и электронов. Есть позитроний, есть мюоний, есть мюонные атомы. Для них в принципе нет места в таблице, но их умеют делать и даже заставлять вступать в реакции.

Далее, по сути, любая нейтронная звезда — это огромное атомное ядро, при желании можно прикинуть количество оставшихся в живых после коллапса протонов и выдать получившемуся атому полагающееся ему место в периодической системе.

Чему равно число орбиталей на s- p- d- f-подуровнях?

На s-подуровне 1 орбиталь, на которой могут находиться 1 или 2 электрона.

На p-подуровне 3 орбитали, на них могут находиться до 6 электронов.

На d-подуровне 5 орбиталей, на них могут находиться до 10 электронов.

На f-подуровне 7 орбиталей, на них могут находиться до 14 электронов.

За счёт чего скрепляются друг с другом атомы, если электроны на их оболочках движутся и не слипаются вместе? За счёт притяжения самих ядер?

Если говорить коротко и упрощенно, то это кулоновское взаимодействие электронов и ядер. Электроны не «слипаются» это верно, но они и не улетают от ядра (во всяком случае не как правило). Таким образом, мы имеем систему из положительного (ядро) и отрицательного (электронная оболочка) заряда. Электронная оболочка одного атома может кулоновски взаимодействовать и с ядром другого атома, которое тоже заряжено противоположно. Варианты такого взаимодействия (и, соответственно, типы химической связи) могут быть очень разные.

Обычно выделяют следующие типы связи:
1) ковалентная (включая сюда одноэлектронную связь, двухэлектронную трехцентровую и т.п.) — один или два внешних электрона одного или двух или трех атомов сильно взаимодействуют с двумя (иногда тремя) ядрами, обеспечивая сильную и направленную связь между этими двумя (тремя) атомами. Такая связь характерна для атомов, составляющих молекулы.
2) металлическая — внешние электроны всех атомов делокализованы (обобщены) и сильно и ненаправленно взаимодействуют со всеми ядрами. Этот тип связи характерен для металлов, как видно из названия.
3) ионная связь — один или несколько внешних электронов атомов одного типа полностью передаются атомам другого типа. В результате образуются заряженные атомы (ионы — положительные и отрицательные), которые вступают в сильные ненаправленные взаимодействия друг с другом. Этот тип связи харатерен для ионных кристаллов (в основном — соли).
4) ван-дер-ваальсова связь (включая более сильную водородную) — за счет постоянного или временного смещения электронной оболочки атома или молекулы относительно симметричного расположения вокруг ядра (ядер) возникает постоянный или наведенный дипольный момент. Такие постоянные или наведенные диполи вступают в слабое взаимодействие друг с другом. Взаимодействие обычно ненаправленное (за исключением водородной связи и некоторых других взаимодействий между постоянными диполями). Этот тип связи характерен для межмолекулярных взаимодействий (то есть, строго говоря, это уже не «скрепление атомов друг с другом», а скорее скрепление молекул друг с другом).

Это всё очень коротко и упрощенно, но иначе придется писать очень подробно с большим количеством вариантов и, вероятно, заодно рассказать краткий курс строения вещества.

Источник статьи: http://yandex.ru/q/question/hw.nature/kak_napisat_elektronnuiu_konfiguratsiiu_d15a9292/


0 0 голоса
Article Rating
Подписаться
Уведомить о
guest

0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии