Меню Рубрики

Как пишется знак рассмотрим в геометрии

Символьные обозначения

Для обозначения геометрических фигур и их проекций, для отображения отношения между геометрическими фигурами, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем используются символьные обозначения.

Символьные обозначения, все их многообразие, может быть подразделено на две группы: — Первая группа — обозначения геометрических фигур и отношения между ними; — Вторая группа — обозначения логических операций, составляющая синтаксическую основу геометрического языка.

Символьные обозначения — Первая группа

Символы, обозначающие геометрические фигуры и отношения между ними

Обозначения геометрических фигур: Φ — геометрическая фигура; A, B, C, D, . L, M, N, . — точки расположенные в пространстве; 1, 2, 3, 4, . 12, 13, 14, . — точки расположенные в пространстве; a, b, c, d, . l, m, n, . — линии, произвольно расположенные по отношению к плоскостям проекций; h, υ(f), ω — линии уровня (горизонталь, фронталь, профильная прямая соответственно); (AB) — прямая проходящая через точки A и B; [AB) — луч с началом в точке A; [AB] — отрезок прямой, ограниченный точками A и B; α, β, γ, δ, . ζ, η, θ — поверхность; ∠ABC — угол с вершиной в точке B; ∠α, ∠β, ∠γ — угол α, угол β, угол γ соответственно; |AB| — расстояние от точки A до точки B (длина отрезка AB); |Aa| — расстояние от точки A до линии a; |Aα| — расстояние от точки A до поверхности α; |ab| — расстояние между прямыми a и b; |αβ| — расстояние между поверхностями α и β; H, V, W — координатные плоскости проекций (именуемые как горизонтальная, фронтальная, профильная соответственно); П1, П2, П3 — координатные плоскости проекций (именуемые как горизонтальная, фронтальная, профильная соответственно); x, y, z — координатные оси проекций (ось абсцисс, ось ординат, ось аппликат); ko — постоянная прямая эпюра Монжа; O — точка пересечения осей проекций; `, «, `» — верхние индексы для проекций точек, прямых, углов, фигур, поверхностей на плоскости проекций (именуемые как горизонтальную, фронтальную, профильную соответственно); 1, 2, 3 — верхние индексы для проекций точек, прямых, углов, фигур, поверхностей на плоскости проекций (именуемые как горизонтальную, фронтальную, профильную соответственно); αH, αV, αW — след поверхности оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно; αH, αV, αW — след поверхности α оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно; aH, aV, aW — след прямой a оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно;

Проекции точек, линий, поверхностей любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса A`, A», A`» или 1`, 1″, 1`», соответствующего плоскости проекции, на которой они получены: A`, B`, C`, D`, . L`, M`, N`, . — горизонтальные проекции точек; A», B», C», D», . L», M», N», . — фронтальные проекции точек; A`», B`», C`», D`», . L`», M`», N`», . — профильные проекции точек; a`, b`, c`, d`, . l`, m`, n`, . — горизонтальные проекции линий; a», b», c», d», . l», m», n», . — фронтальные проекции линий; a`», b`», c`», d`», . l`», m`», n`», . — профильные проекции линий; α`, β`, γ`, δ`, . ζ`, η`, θ`, . — горизонтальные проекции поверхностей; α», β», γ», δ», . ζ», η», θ», . — фронтальные проекции поверхностей; α`», β`», γ`», δ`», . ζ`», η`», θ`», . — профильные проекции поверхностей;

Символы взаиморасположения геометрических объектов

Обозначение Смысловое значение Пример символической записи
(. ) способ задания геометрического объекта в пространстве и на комплексном чертеже А(А`, А») – точка А задана на комплексном чертеже горизонтальной и фронтальной проекциями; α(А, b) – плоскость α задана прямой b и точкой А.
∈ ⊂ , ⊃ принадлежность А∈l – точка А принадлежит прямой l; l⊂α – прямая l лежит в плоскости α
совпадение А`≡ В` – горизонтальные проекции точек А и В совпадают.
‖ , // параллельность a // b – прямые a и b параллельны.
перпендикулярность c⊥d – прямые c и d перпендикулярны.
скрещивание m ∸ n – прямые m и n скрещивающиеся.
пересечение k ∩ l – прямые k и l пересекаются.
подобие ΔАВС

ΔDEF – треугольники ABC и DEF подобны.

конгруэнтность ΔАВС ≅ /АВ/ = /CD/ – отрезки АВ и CD равны.
= равенство, результат действия /АВ/ = /CD/ – длины отрезков AB и CD равны; k ∩ l = M — прямые k и l пересекаются в точке M.
/ отрицание А ∉ l – точка А не принадлежит прямой l.
→ ← отображение, преобразование V/H → V1/H– система ортогональных плоскостей V/H преобразуется в систему плоскостей V1/H

Символьные обозначения — Вторая группа

Источник статьи: http://ngeo.fxyz.ru/%D1%81%D0%B8%D0%BC%D0%B2%D0%BE%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5_%D0%BE%D0%B1%D0%BE%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D1%8F/

Какие есть математические символы?

К самым распространённым относятся:

  • Знак плюс-минус: ±
  • Знак корня (радикал): √
  • Факториал: !
  • Знак интеграла: ∫
  • Знак возведения в степень: ^ (в типографской и рукописной записи формул не применяется; используется в программировании, наряду с более редкими символами ↑ и **, а также в «линейной» текстовой записи формул).
  • Приведите примеры рациональных и иррациональных чисел. Почему они так называются?

    • Рациональное число — такое число, которое можно представить в виде несократимой дроби, у которой в числителе и знаменателе целые числа.
      Например: 140/91
    • А конечной или бесконечной бывает десятичная запись числа. Десятияная запись любого рационального числа либо конечная, либо периодическая (содержащая циклически повторяющиеся комбинации цифр).
    • Иррациональное число — не являющееся рациональным. Его невозможно представить в виде несократимой дроби.
    • например, иррациональным является √2 — длина диагонали квадрата, сторона которого равна 1.
    • Чтобы доказать, что число иррационально, делают предположение, что оно рационально и может быть представлено в виде несократимой дроби p/q. Используя преобразования, доказывают, что p и q не взаимно простые, значит предположение о рациональности дроби было неверно.
    • Название «рациональный» произошло от латинского слова «ratio» — , одним из значений которого является соотношение. Дробь это как раз отношение числителя к знаменателю, соотношение.
      А «иррациональное» не является переводом слова, но, очевидно, онбозначает «не рациональное».

    Как напечатать римские цифры на клавиатуре?

    Для написания римских цифр необходимо изменить раскладку клавиатуры на английскую (клавиши alt и shift в левой части клавиатуры необходимо нажать одновременно) и использовать в качестве цифр буквы I (русская клавиша «Ш»), V (русская клавиша «М»), X (русская клавиша «Ч»), M (русская клавиша «Ь»).

    Чему равно число Пи?

    Никто не знает точно, чему равно пи. Если разделить длину окружности на ее диаметр, то результат всегда будет одинаковый, какую окружность ни возьми. Этот результат и обозначили греческой буквой пи. Буква понадобилась потому, что привычными цифрами это число точно записать невозможно. Но мы знаем, чему оно равно приблизительно.

    Самое знаменитое приближение – 3,14. Чтобы запомнить больше цифр, можно выучить стишок:

    Три, четырнадцать, пятнадцать,

    Какие интересные логические и математические парадоксы вы знаете? Можете ли вы их объяснить «на пальцах»?

    Каждое второе натуральное число делится на два, каждое третье-на три, каждое четвертое-на четыре. Казалось бы царит полная гармония. Но откуда берется беспорядок с простыми числами(которые делятся сами на себя и единицу)? Вот почему говорят, что хаос это непознанная закономерность.

    Какой математический факт вас поражает больше всего?

    Математика — обширна, в ней паралельно существуют совершенно разные науки. Уже в школе математика, начинаясь с основ арифметики и операций с натуральными числами, позже делится на алгебру и геометрию. В университете появляется математический анализ, аналитическая геометрия, комплексный анализ. А есть еще функциональный анализ, динамические системы, топология, теория кос, алгебры Ли, итд.

    Но оказывается, что все разделы математики тесно связаны между собой. Например, есть такой математический факт:

    В этой формуле соединены 5 фундаментальных математических констант из разных наук:

    • 0 — «единичный элемент» в группе действительных чисел по сложению (арифметика)
    • 1 — «единичный элемент» в поле действительных чисел по умножению (теория чисел)
    • e — основание натуральных логарифмов, производная функции e^x равна самой себе (матанализ)
    • pi — отношение длины окружности к ее диаметру (геометрия)
    • i — «мнимая единица», основа комплексных чисел (комлексный анализ)

    Источник статьи: http://yandex.ru/q/question/hw.math/kakie_est_matematicheskie_simvoly_361b186d/


    0 0 голоса
    Article Rating
    Подписаться
    Уведомить о
    guest

    0 Комментарий
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии