Меню Рубрики

Как пишется разность в арифметической прогрессии

Арифметическая прогрессия.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень. »
И для тех, кто «очень даже. » )

Арифметическая прогрессия — это ряд чисел, в котором каждое число больше (или меньше) предыдущего на одну и ту же величину.

Эта тема частенько представляется сложной и непонятной. Индексы у буковок, n-й член прогрессии, разность прогрессии — всё это как-то смущает, да. Разберёмся со смыслом арифметической прогрессии и всё сразу наладится.)

Понятие арифметической прогрессии.

Арифметическая прогрессия — понятие очень простое и чёткое. Сомневаетесь? Зря.) Смотрите сами.

Я напишу незаконченный ряд чисел:

Сможете продлить этот ряд? Какие числа пойдут дальше, за пятёркой? Каждый. э-э-э. короче, каждый сообразит, что дальше пойдут числа 6, 7, 8, 9 и т.д.

Усложним задачу. Даю незаконченный ряд чисел:

Сможете уловить закономерность, продлить ряд, и назвать седьмое число ряда?

Если сообразили, что это число 20 — я вас поздравляю! Вы не только почувствовали ключевые моменты арифметической прогрессии, но и успешно употребили их в дело! Если не сообразили — читаем дальше.

А теперь переведём ключевые моменты из ощущений в математику.)

Арифметическая прогрессия имеет дело с рядами чисел. Это и смущает поначалу. Мы привыкли уравнения решать, графики строить и всё такое. А тут продлить ряд, найти число ряда.

Ничего страшного. Просто прогрессии — это первое знакомство с новым разделом математики. Раздел называется «Ряды» и работает именно с рядами чисел и выражений. Привыкайте.)

В арифметической прогрессии любое число отличается от предыдущего на одну и ту же величину.

В первом примере эта разница — единичка. Какое число ни возьми, оно больше предыдущего на единичку. Во втором — тройка. Любое число больше предыдущего на тройку. Собственно, именно этот момент и даёт нам возможность уловить закономерность и рассчитать последующие числа.

Этот момент не бросается в глаза, да. Но очень, очень важен. Вот он: каждое число прогрессии стоит на своём месте. Есть первое число, есть седьмое, есть сорок пятое, и т.д. Если их перепутать как попало, закономерность исчезнет. Исчезнет и арифметическая прогрессия. Останется просто ряд чисел.

Разумеется, в новой теме появляются новые термины и обозначения. Их надо знать. Иначе и задание-то не поймёшь. Например, придётся решать, что-нибудь, типа:

Выпишите первые шесть членов арифметической прогрессии (an), если a2 = 5, d = -2,5.

Внушает?) Буковки, индексы какие-то. А задание, между прочим — проще некуда. Просто нужно понять смысл терминов и обозначений. Сейчас мы это дело освоим и вернёмся к заданию.

Термины и обозначения.

Арифметическая прогрессия — это ряд чисел, в котором каждое число отличается от предыдущего на одну и ту же величину.

Эта величина называется разность арифметической прогрессии. Разберёмся с этим понятием поподробнее.

Разность арифметической прогрессии.

Разность арифметической прогрессии — это величина, на которую любое число прогрессии больше предыдущего.

Один важный момент. Прошу обратить внимание на слово «больше». Математически это означает, что каждое число прогрессии получается прибавлением разности арифметической прогрессии к предыдущему числу.

Для расчёта, скажем, второго числа ряда, надо к первому числу прибавить эту самую разность арифметической прогрессии. Для расчёта пятого — разность надо прибавить к четвёртому, ну и т.п.

Разность арифметической прогрессии может быть положительной, тогда каждое число ряда получится реально больше предыдущего. Такая прогрессия называется возрастающей. Например:

Здесь каждое число получается прибавлением положительного числа, +5 к предыдущему.

Разность может быть и отрицательной, тогда каждое число ряда получится меньше предыдущего. Такая прогрессия называется (вы не поверите!) убывающей.

Здесь каждое число получается тоже прибавлением к предыдущему, но уже отрицательного числа, -5.

Кстати, при работе с прогрессией очень полезно бывает сразу определить её характер — возрастающая она, или убывающая. Это здорово помогает сориентироваться в решении, засечь свои ошибки и исправить их, пока не поздно.

Разность арифметической прогрессии обозначается, как правило, буквой d.

Как найти d ? Очень просто. Надо от любого числа ряда отнять предыдущее число. Вычесть. Кстати, результат вычитания называется «разность».)

Определим, например, d для возрастающей арифметической прогрессии:

Берём любое число ряда, какое хотим, например, 11. Отнимаем от него предыдущее число, т.е. 8:

Это правильный ответ. Для этой арифметической прогрессии разность равна трём.

Брать можно именно любое число прогрессии, т.к. для конкретной прогрессии d — всегда одно и то же. Хоть где-нибудь в начале ряда, хоть в середине, хоть где угодно. Брать нельзя только самое первое число. Просто потому, что у самого первого числа нет предыдущего.)

Кстати, зная, что d = 3, найти седьмое число этой прогрессии очень просто. Прибавим 3 к пятому числу — получим шестое, это будет 17. Прибавим к шестому числу тройку, получим седьмое число — двадцать.

Определим d для убывающей арифметической прогрессии:

Напоминаю, что, независимо от знаков, для определения d надо от любого числа отнять предыдущее. Выбираем любое число прогрессии, например -7. Предыдущее у него — число -2. Тогда:

Разность арифметической прогрессии может быть любым числом: целым, дробным, иррациональным, всяким.

Другие термины и обозначения.

Каждое число ряда называется членом арифметической прогрессии.

Каждый член прогрессии имет свой номер. Номера идут строго по порядочку, безо всяких фокусов. Первый, второй, третий, четвёртый и т.д. Например, в прогрессии 2, 5, 8, 11, 14, . двойка — это первый член, пятёрка — второй, одиннадцать — четвёртый, ну, вы поняли. ) Прошу чётко осознать — сами числа могут быть совершенно любые, целые, дробные, отрицательные, какие попало, но нумерация чисел — строго по порядку!

Как записать прогрессию в общем виде? Не вопрос! Каждое число ряда записывается в виде буквы. Для обозначения арифметической прогрессии используется, как правило, буква a. Номер члена указывается индексом внизу справа. Члены пишем через запятую (или точку с запятой), вот так:

a1 — это первое число, a3 — третье, и т.п. Ничего хитрого. Записать этот ряд кратко можно вот так: (an).

Прогрессии бывают конечные и бесконечные.

Конечная прогрессия имеет ограниченное количество членов. Пять, тридцать восемь, сколько угодно. Но — конечное число.

Бесконечная прогрессия — имеет бесконечное количество членов, как можно догадаться.)

Записать конечную прогрессию через ряд можно вот так, все члены и точка в конце:

Или так, если членов много:

В краткой записи придётся дополнительно указывать количество членов. Например (для двадцати членов), вот так:

Бесконечную прогрессию можно узнать по многоточию в конце ряда, как в примерах этого урока.

Теперь уже можно порешать задания. Задания несложные, чисто для понимания смысла арифметической прогрессии.

Примеры заданий по арифметической прогрессии.

Разберём подробненько задание, что приведено выше:

1. Выпишите первые шесть членов арифметической прогрессии (an), если a2 = 5, d = -2,5.

Переводим задание на понятный язык. Дана бесконечная арифметическая прогрессия. Известен второе число этой прогрессии: a2 = 5. Известна разность прогрессии: d = -2,5. Нужно найти первый, третий, четвёртый, пятый и шестой члены этой прогрессии.

Для наглядности запишу ряд по условию задачки. Первые шесть членов, где второй член — пятёрка:

Легко можно посчитать, например, a3. Мы знаем (по смыслу арифметической прогрессии), что a3 больше a2 на величину d. Стало быть:

Подставляем в выражение a2 = 5 и d = -2,5. Не забываем про минус!

Третий член получился меньше второго. Всё логично. Если число больше предыдущего на отрицательную величину, значит само число получится меньше предыдущего. Прогрессия — убывающая. Ладно, учтём.) Считаем четвёртый член нашего ряда:

Ну и дальше, по накатанной колее:

Так, члены с третьего по шестой вычислили. Получился такой ряд:

Остаётся найти первый член a1 по известному второму. Это шаг в другую сторону, влево.) Значит, разность арифметической прогрессии d надо не прибавить к a2, а отнять:

Вот и все дела. Ответ задания:

Попутно замечу, что это задание мы решали рекуррентным способом. Это страшное слово означает, всего лишь, поиск члена прогрессии по предыдущему (соседнему) числу. Другие способы работы с прогрессией мы рассмотрим далее.

Из этого несложного задания можно сделать один важный вывод.

Если нам известен хотя бы один член и разность арифметической прогрессии, мы можем найти любой член этой прогрессии.

Запомнили? Этот несложный вывод позволяет решать большинство задач школьного курса по этой теме. Все задачи крутятся вокруг трёх главных параметров: член арифметической прогрессии, разность прогрессии, номер члена прогрессии. Всё.

Разумеется, вся предыдущая алгебра не отменяется.) К прогрессии прицепляются и неравенства, и уравнения, и прочие вещи. Но по самой прогрессии — всё крутится вокруг трёх параметров.

Для примера рассмотрим некоторые популярные задания по этой теме.

2. Запишите конечную арифметическую прогрессию в виде ряда, если n=5, d = 0,4, и a1 = 3,6.

Здесь всё просто. Всё уже дано. Нужно вспомнить, как считаются члены арифметической прогрессии, посчитать, да и записать. Желательно не пропустить слова в условии задания: «конечную» и «n=5«. Чтобы не считать до полного посинения.) В этой прогрессии всего 5 (пять) членов:

3. Определите, будет ли число 7 членом арифметической прогрессии (an), если a1 = 4,1; d = 1,2.

Хм. Кто ж его знает? Как определить-то?

Как-как. Да записать прогрессию в виде ряда и посмотреть, будет там семёрка, или нет! Считаем:

Так, стоит считать дальше, или нет, как думаете?) Разумеется, нет! Запишем в виде ряда:

Сейчас чётко видно, что семёрку мы просто проскочили между 6,5 и 7,7! Не попала семёрка в наш ряд чисел, и, значит, семёрка не будет членом заданной прогрессии.

А вот задачка на основе реального варианта ГИА:

4. Выписано несколько последовательных членов арифметической прогрессии:

Найдите член прогрессии, обозначенный буквой х.

Здесь записан ряд без конца и начала. Нет ни номеров членов, ни разности d. Ничего страшного. Для решения задания достаточно понимать смысл арифметической прогрессии. Смотрим и соображаем, что можно узнать из этого ряда? Какие параметры из трёх главных?

Номера членов? Нет тут ни единого номера.

Зато есть три числа и — внимание! — слово «последовательных» в условии. Это значит, что числа идут строго по порядку, без пропусков. А есть ли в этом ряду два соседних известных числа? Да, есть! Это 9 и 6. Стало быть, мы можем вычислить разность арифметической прогрессии! От шестёрки отнимаем предыдущее число, т.е. девятку:

Остались сущие пустяки. Какое число будет предыдущим для икса? Пятнадцать. Значит, икс можно легко найти простым сложением. К 15 прибавить разность арифметической прогрессии:

Следующие задачки решаем самостоятельно. Замечание: эти задачки — не на формулы. Чисто на понимание смысла арифметической прогрессии.) Просто записываем ряд с числами-буквами, смотрим и соображаем.

5. Найдите первый положительный член арифметической прогрессии, если a5 = -3; d = 1,1.

6. Известно, что число 5,5 является членом арифметической прогрессии (an), где a1 = 1,6; d = 1,3. Определите номер n этого члена.

7. Известно, что в арифметической прогрессии a2 = 4; a5 = 15,1. Найдите a3.

8. Выписано несколько последовательных членов арифметической прогрессии:

Найдите член прогрессии, обозначенный буквой х.

9. Поезд начал движение от станции, равномерно увеличивая скорость на 30 метров в минуту. Какова будет скорость поезда через пять минут? Ответ дайте в км/час.

10. Известно, что в арифметической прогрессии a2 = 5; a6 = -5. Найдите a1.

Ответы (в беспорядке): 7,7; 7,5; 9,5; 9; 0,3; 4.

Всё получилось? Замечательно! Можно осваивать арифметическую прогрессию на более высоком уровне, в следующих уроках.

Не всё получилось? Не беда. В Особом разделе 555 все эти задачки разобраны по косточкам.) И, конечно, описан простой практический приём, который сразу высвечивает решение подобных заданий чётко, ясно, как на ладони!

Кстати, в задачке про поезд есть две проблемки, на которых часто спотыкается народ. Одна — чисто по прогрессии, а вторая — общая для любых задач по математике, да и физике тоже. Это перевод размерностей из одной в другую. В 555 показано, как надо эти проблемы решать.

В этом уроке мы рассмотрели элементарный смысл арифметической прогрессии и её основные параметры. Этого достаточно для решения практически всех задач на эту тему. Прибавляй d к числам, пиши ряд, всё и решится.

Решение «на пальцах» хорошо подходит для очень коротких кусочков ряда, как в примерах этого урока. Если ряд подлиннее, вычисления усложняются. Например, если в задачке 9 в вопросе заменить «пять минут» на «тридцать пять минут», задачка станет существенно злее.)

А ещё бывают задания простые по сути, но несусветные по вычислениям, например:

Дана арифметическая прогрессия (an). Найти a121, если a1=3, а d=1/6.

И что, будем много-много раз прибавлять по 1/6?! Это же убиться можно!?

Можно.) Если не знать простую формулу, по которой решать подобные задания можно за минуту. Эта формула будет в следующем уроке. И задачка эта там решена. За минуту.)

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Вот здесь можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

А вот здесь можно познакомиться с функциями и производными.

Источник статьи: http://www.egesdam.ru/page9ap1.php


0 0 голоса
Article Rating
Подписаться
Уведомить о
guest

0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии