Меню Рубрики

Как пишется параллельно в геометрии

Как пишется параллельно в геометрии

ПАРАЛЛЕЛЬНОСТЬ — ПАРАЛЛЕЛЬНОСТЬ, параллельности, мн. нет, жен. (мат. и книжн.). отвлеч. сущ. к параллельный. Параллельность линий. Параллельность работы. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

параллельность — параллелизм, дублирование; симультанность, синхронность, синхронизм, единовременность, одновременность Словарь русских синонимов. параллельность см. одновременность Словарь синонимов русского языка. Практическ … Словарь синонимов

ПАРАЛЛЕЛЬНОСТЬ — 1) равное отстояние: такое положение линий или плоскостей, при котором они отстоят во всех точках одинако одна от другой. 2) сходство, напр. некоторых отдельных мест в Св. Писании. Словарь иностранных слов, вошедших в состав русского языка.… … Словарь иностранных слов русского языка

параллельность — и, ж. parallèle f. Свойство и качество параллельного. БАС 1. Лекс. Ян. 1806: параллельность; САН 1847: паралле/льность … Исторический словарь галлицизмов русского языка

параллельность — ПАРАЛЛЕЛЬНЫЙ, ая, ое; лен, льна. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

параллельность — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN parallelism … Справочник технического переводчика

Параллельность — ж. отвлеч. сущ. по прил. параллельный 2., 3., 4., 5. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

параллельность — параллельность, параллельности, параллельности, параллельностей, параллельности, параллельностям, параллельность, параллельности, параллельностью, параллельностями, параллельности, параллельностях (Источник: «Полная акцентуированная парадигма по… … Формы слов

параллельность — паралл ельность, и … Русский орфографический словарь

параллельность — Syn: параллелизм, дублирование … Тезаурус русской деловой лексики

Источник статьи: http://dic.academic.ru/dic.nsf/ruwiki/1085881

Признаки и свойства параллельных прямых

Признаки параллельных прямых

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

4. Если соответственные углы равны, то прямые параллельны:

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

Пятое свойство — это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой:

Источник статьи: http://izamorfix.ru/matematika/planimetriya/priznaki_pryam.html

Прямая линия. Параллельные прямые. Основные понятия.

Две прямые называются параллельными, если, находясь в одной плоскости, они не пересекаются, сколько бы их ни продолжали. Параллельность прямых на письме обозначают так: AB || СE

Возможность существования таких прямых доказывается теоремой.

Через всякую точку, взятую вне данной прямой, можно провести параллельную этой прямой.

Пусть AB данная прямая и С какая-нибудь точка, взятая вне ее. Требуется доказать, что через С можно провести прямую, параллельную AB. Опустим на AB из точки С перпендикуляр СD и затем проведем СE ^ СD, что возможно. Прямая CE параллельна AB.

Для доказательства допустим противное, т.е., что CE пересекается с AB в некоторой точке M. Тогда из точки M к прямой СD мы имели бы два различных перпендикуляра MD и , что невозможно. Значит, CE не может пересечься с AB, т.е. СE параллельна AB.

Аксиома параллельных линий.

Через одну и ту же точку нельзя провести двух различных прямых, параллельных одной и той же прямой.

Так, если прямая СD, проведенная через точку С параллельна прямой AB, то всякая другая прямая СE, проведенная через ту же точку С, не может быть параллельна AB, т.е. она при продолжении пересечется с AB.

Доказательство этой не вполне очевидной истины оказывается невозможным. Ее принимают без доказательства, как необходимое допущение (postulatum).

1. Если прямая (СE) пересекается с одной из параллельных (СВ), то она пересекается и с другой (AB), потому что в противном случае через одну и ту же точку С проходили бы две различные прямые, параллельные AB, что невозможно.

2. Если каждая из двух прямых (A и B) параллельны одной и той же третьей прямой (С), то они параллельны между собой.

Действительно, если предположить, что A и B пересекаются в некоторой точке M, то тогда через эту точку проходили бы две различные прямые, параллельные С, что невозможно.

Если прямая перпендикулярна к одной из параллельных прямых, то она перпендикулярна и к другой параллельной.

Перпендикуляр EF, пересекаясь с AB, непременно пересечет и СD. Пусть точка пересечения будет H.

Предположим теперь, что СD не перпендикулярна к EH. Тогда какая-нибудь другая прямая, например HK, будет перпендикулярна к EH и, следовательно через одну и ту же точку H будут проходить две прямые параллельные AB: одна СD, по условию, а другая HK по доказанному раньше. Так как это невозможно, то нельзя допустить, что СВ была не перпендикулярна к EH.

Источник статьи: http://www.calc.ru/Parallelnyye-Pryamyye-Osnovnyye-Ponyatiya.html

Как пишется параллельно в геометрии

Параллельными (иногда — равнобежными) прямыми называются прямые, которые лежат в одной плоскости и либо совпадают, либо не пересекаются. В некоторых школьных определениях совпадающие прямые не считаются параллельными, здесь такое определение не рассматривается.

Свойства

  1. Параллельность — бинарноеотношение эквивалентности, поэтому разбивает всё множество прямых на классы параллельных между собой прямых.
  2. Через любую точку можно провести ровно одну прямую, параллельную данной. Это отличительное свойство евклидовой геометрии, в других геометриях число 1 заменено другими (в геометрии Лобачевского таких прямых минимум две)
  3. 2 параллельные прямые в пространстве лежат в одной плоскости.
  4. При пересечении 2 параллельных прямых третьей, называемой секущей:
    1. Секущая обязательно пересекает обе прямые.
    2. При пересечении образуется 8 углов, некоторые характерные пары которых имеют особые названия и свойства:
      1. Накрест лежащие углы равны.
      2. Соответственные углы равны.
      3. Односторонние углы в сумме составляют 180°.

В геометрии Лобачевского

В геометрии Лобачевского в плоскости через точку C вне данной прямой AB проходит бесконечное множество прямых, не пересекающих AB . Из них параллельными к AB называются только две. Прямая CE называется равнобежной (параллельной) прямой AB в направлении от A к B , если:

  1. точки B и E лежат по одну сторону от прямой AC ;
  2. прямая CE не пересекает прямую AB , но всякий луч, проходящий внутри угла ACE , пересекает луч AB .

Аналогично определяется прямая, равнобежная AB в направлении от B к A .

Все остальные прямые, не пересекающие данную, называются ультрапараллельными или расходящимися.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое «Параллель (геометрия)» в других словарях:

Параллель (значения) — Параллель: Параллель линия сечения поверхности земного шара плоскостью, параллельной плоскости экватора. Параллель термин, означающий аналогичность в науках, литературоведении и др. Параллель (система) Параллель (геометрия) … Википедия

Геометрия Лобачевского — (1) евклидова геометрия; (2) геометрия Римана; (3) геометрия Лобачевского Геометрия Лобачевского (гип … Википедия

ЛОБАЧЕВСКОГО ГЕОМЕТРИЯ — геометрия, основанная на тех же основных посылках, что и евклидова геометрия, за исключением аксиомы о параллельных (см. Пятый постулат). В евклидовой геометрии согласно этой аксиоме на плоскости через точку Р, лежащую вне прямой А А, проходит… … Математическая энциклопедия

Лобачевского геометрия — Геометрия Лобачевского (гиперболическая геометрия) одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на… … Википедия

Лобачевского геометрия — геометрическая теория, основанная на тех же основных посылках, что и обычная Евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского. Евклидова аксиома о параллельных гласит:… … Большая советская энциклопедия

Плоскость Лобачевского — Геометрия Лобачевского (гиперболическая геометрия) одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на… … Википедия

Успенский, Лев Васильевич — В Википедии есть статьи о других людях с такой фамилией, см. Успенский. Лев Успенский Имя при рождении: Лев Васильевич Успенский Псевдонимы … Википедия

Фалес Милетский — Θαλῆς ὁ Μιλήσιος Θαλῆς ὁ Μιλήσιος … Википедия

Гиппократ Хиосский — В Википедии есть статьи о других людях с именем Гиппократ (значения). Гиппократ Хиосский греч. Ἱπποκράτης Место рождения: остров Хиос Научная сфера … Википедия

ЖЕЛАНИЕ И НАСЛАЖДЕНИЕ — текст Делеза [ Desir et plaisir , написан в 1977, предназначался для приватного использования: через общего знакомого был передан лично Фуко ; опубликован в 1994]. Делез анализирует возможные точки пересечения понятий собственной философской… … Социология: Энциклопедия

Источник статьи: http://dic.academic.ru/dic.nsf/ruwiki/1085873

Когда пересекаются параллельные прямые

Из школьного курса геометрии каждому человеку известно, что параллельными именуются прямые, которые не имеют общей точки. Однако это простое утверждение почему-то изредка опровергается различными знакомыми, которые доказывают, что коллинеарные линии могут пересекаться. В реальности, геометрия Евклида, которую преподают в школе не единственный вариант этой науки. При более конкретном исследовании выясняется, что пересечение параллельных прямых зависит от формы поверхности, на которой они проведены. Рассмотрим несколько различных вариантов геометрий, принципиально отличающихся друг от друга.

Геометрия Евклида

Это привычная всем геометрия, имеющая историю в не одну тысячу лет. Ее начала были известны еще в Древнем Египте, а аксиомы (постулаты, утверждения) были сформулированы в Древней Греции выдающимся математиком древности Евклидом. Все его утверждения не вызывали сомнений, кроме пятого. Это утверждение показывало, что через точку, лежащую вне прямой, есть возможность провести единственную прямую коллинеарную заданной. Коллинеарные прямые в этом случае не пересекаются. Сумма внутренних углов треугольника равна двум прямым углам. Однако попытки математически доказать 5 постулат Евклида упирались в порочный круг.

Однако житейский опыт дает возможность не совсем верить в справедливость утверждения, что параллельные прямые не пересекаются — если смотреть на ровное железнодорожное полотно, то будет впечатление, что где-то вдалеке параллельные рельсы сойдутся в одну точку. То же самое касается и лучей идущих от точечного источника — тени от разных предметов параллельны, но оставившие их лучи вышли из одной точки.

Приведенные выше рассуждения дали возможность создать проективную геометрию, которая дополняет привычную Евклидову прямую бесконечно удаленной точкой, а на плоскости появляется прямая бесконечно удаленных точек. Вот на этой прямой и пересекаются все коллинеарные прямые.

Геометрия Лобачевского

В 19 веке Николай Иванович Лобачевский, а также немец Гаусс и венгр Больяи, предложили геометрию, в которой имеются минимум 2 прямые коллинеарные заданной. Эти прямые пересекаются между собой и приближаются к заданной прямой с двух различных направлений. Место их пересечения с заданной прямой находится в бесконечно удаленной точке. Прямые, которые пересекаются с заданной прямой еще дальше, называются сверхпараллельными.

Наглядно это можно представить, если изобразить плоскость, как овал, и провести внутри него прямую. Линия границы овала будет представлять в таком варианте прямую бесконечно удаленных точек. Затем вне данной прямой зафиксируем точку и проведем через нее 2 прямые, пересекающие заданную на границе овала (то есть на прямой бесконечно удаленных точек). Эти 2 прямые и будут называться параллельными. Те же прямые, которые пересекаются с данной прямой за пределами овала окажутся сверхпараллельными.

Согласно последним научным данным, геометрия Лобачевского имеет место в реальной природе вблизи крупных тяготеющих масс, где само пространство перестает быть плоским и получает кривизну. Сумма углов треугольника в этом варианте не достигает 180 градусов.

Сферическая геометрия и геометрия Римана

Тоже в 19 веке немец Риман по-своему проанализировал 5 утверждение Евклида и предположил, что коллинеарных прямых нет в принципе. На основании своего предположения Риман создал геометрию, в которой у всех прямых имеется общая точка, а сумма углов треугольника превышает 180 градусов. Нет в геометрии Римана и понятия, что точка лежит между двумя другими точками. Но это вполне реальная с математической точки зрения геометрия.

Объяснить римановскую геометрию на доступном примере сложно, поэтому имеет смысл обратиться к близкой к ней по множеству характеристик сферической геометрии (правда, здесь параллельные прямые пересекаются сразу в 2 точках).

Рассмотрим в качестве сферы нашу планету Земля. Как одну из прямых возьмем экватор, а в качестве коллинеарных между собой прямых будем считать меридианы. Они коллинеарны друг относительно друга, поскольку пересекают экватор под прямым углом (углом между пересекающимися линиями в математике является угол между их касательными, проведенными в точке пересечения данных линий). Однако известно, что меридианы пересекаются на полюсах.

Общим выводом, ради которого была написана статья, является утверждение, что нельзя достоверно сказать, пересекаются параллельные прямые или нет, если дополнительно не указывать, какой из видов геометрии имеется в виду.

Если вам понравилась статья, то поставьте лайк и присоединяйтесь к более, чем 20 000 подписчикам канала Научпоп. Наука для всех . Оставайтесь с нами, друзья! Впереди ждёт много интересного!

Источник статьи: http://zen.yandex.ru/media/popsci/kogda-peresekaiutsia-parallelnye-priamye-5c80bcc7146cc100aff5c8b7


0 0 голоса
Article Rating
Подписаться
Уведомить о
guest

0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии