Меню Рубрики

Как пишется латунь в химии

Как пишется латунь в химии

Несмотря на то, что цинк был открыт только в XVI веке, латунь была известна уже древним римлянам [1] . Они получали её, сплавляя медь с галмеем [2] , то есть с цинковой рудой. Путём сплавления меди с металлическим цинком, латунь впервые была получена в Англии в 1781 году. В XIX веке в Западной Европе и России латунь использовали в качестве поддельного золота.

Во времена Августа в Риме латунь называлась «аурихалк», из которой чеканились сестерции и дупондии. Аурихалк получил название от цвета сплава, похожего на цвет золота.

Физические свойства

  • Плотность — 8300—8700 кг/м³
  • Удельная теплоёмкость при 20 °C — 0,377 кДж·кг −1 ·K −1
  • Удельное электрическое сопротивление — (0,07-0,08)·10 −6 Ом·м
  • Температура плавления латуни в зависимости от состава достигает 880—950 °C. С увеличением содержания цинка температура плавления понижается. Латунь достаточно хорошо сваривается (однако нельзя сваривать латунь сваркой плавлением — можно, например, контактной сваркой) и прокатывается. Хотя поверхность латуни, если не покрыта лаком, чернеет на воздухе, но в массе она лучше сопротивляется действию атмосферы, чем медь. Имеет жёлтый цвет и отлично полируется.
  • Висмут и свинец имеют вредное влияние на латунь, так как уменьшают способность к деформации в горячем состоянии. Тем не менее легирование свинцом применяют для получения сыпучей стружки что облегчает ее удаление при обработке резанием. [3]

Диаграмма состояния Cu — Zn

Медь с цинком образуют кроме основного α-раствора ряд фаз электронного типа β, γ, ε. Наиболее часто структура латуней состоит из α- или α+β’- фаз: α-фаза — твёрдый раствор цинка в меди с кристаллической решёткой меди ГЦК, а β’-фаза — упорядоченный твёрдый раствор на базе химического соединения CuZn с электронной концентрацией 3/2 и примитивной элементарной ячейкой.

При высоких температурах β-фаза имеет неупорядоченное расположение ([ОЦК]) атомов и широкую область гомогенности. В этом состоянии β-фаза пластична. При температуре ниже 454—468 °C расположение атомов меди и цинка в этой фазе становится упорядоченным, и она обозначается β’. Фаза β’ в отличие от β-фазы является более твёрдой и хрупкой; γ-фаза представляет собой электронное соединение Cu5Zn8.

Однофазные латуни характеризуются высокой пластичностью; β’-фаза очень хрупкая и твёрдая, поэтому двухфазные латуни имеют более высокую прочность и меньшую пластичность, чем однофазные.

Влияние содержания цинка в меди на механические свойства отожжённых латуней:

При содержании цинка до 30 % возрастают одновременно и прочность, и пластичность. Затем пластичность уменьшается, вначале за счёт усложнения α — твёрдого раствора, а затем происходит резкое её понижение в связи с появлением в структуре хрупкой β’-фазы. Прочность увеличивается до содержания цинка около 45 % , а затем уменьшается так же резко, как и пластичность.

Большинство латуней хорошо обрабатывается давлением. Особенно пластичны однофазные латуни. Они деформируются при низких и при высоких температурах. Однако в интервале 300—700 °C существует зона хрупкости, поэтому при таких температурах латуни не деформируют.

Двухфазные латуни пластичны при нагреве выше температуры β’-превращения, особенно выше 700 °C, когда их структура становится однофазной (β-фаза). Для повышения механических свойств и химической стойкости латуней в них часто вводят легирующие элементы: алюминий (Al), никель (Ni), марганец (Mn), кремний (Si) и т. д.

Порядок маркировки

Принята следующая маркировка. Латунный сплав обозначают буквой «Л», после чего следуют буквы основных элементов, образующих сплав. В марках деформируемых латуней первые две цифры после буквы «Л» указывают среднее содержание меди в процентах. Например, Л70 — латунь, содержащая 70 % Cu. В случае легированных деформируемых латуней указывают ещё буквы и цифры, обозначающие название и количество легирующего элемента, ЛАЖ60-1-1 означает латунь с 60 % Cu, легированную алюминием (А) в количестве 1 % и железом в количестве 1 %. Содержание Zn определяется по разности от 100 %. В литейных латунях среднее содержание компонентов сплава в процентах ставится сразу после буквы, обозначающей его название. Например, латунь ЛЦ40Мц1,5 содержит 40 % цинка (Ц) и 1,5 % марганца (Мц).

Применение

Деформируемые латуни

Томпак (фр. tombac , от малайск. tambaga — медь) — латунь с содержанием меди 90—97 %. Обладает высокой пластичностью, антикоррозионным и антифрикционными свойствами, хорошо сваривается со сталью, его применяют для изготовления биметалла сталь-латунь. Благодаря золотистому цвету, томпак используют для изготовления художественных изделий, знаков отличия и фурнитуры.

Двойные деформируемые латуни
Марка Область применения
Л96, Л90 Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др.
Л85 Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др.
Л80 Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др.
Л70 Гильзы химической аппаратуры, отдельные штампованные изделия
Л68 Большинство штампованных изделий
Л63 Гайки, болты, детали автомобилей, конденсаторные трубы
Л60 Толстостенные патрубки, гайки, детали машин.
Многокомпонентные деформируемые латуни
Марка Область применения
ЛА77-2 Конденсаторные трубы морских судов
ЛАЖ60-1-1 Детали морских судов.
ЛАН59-3-2 Детали химической аппаратуры, электромашин, морских судов
ЛЖМа59-1-1 Вкладыши подшипников, детали самолетов, морских судов
ЛН65-5 Манометрические и конденсаторные трубки
ЛМц58- 2 Гайки, болты, арматура, детали машин
ЛМцА57-3-1 Детали морских и речных судов
ЛO90-1 Конденсаторные трубы теплотехнической аппаратуры
ЛO70-1 Конденсаторные трубы теплотехнической аппаратуры
ЛO62-1 Конденсаторные трубы теплотехнической аппаратуры
ЛO60-1 Конденсаторные трубы теплотехнической аппаратуры
ЛС63-3 Детали часов, втулки
ЛС74-3 Детали часов, втулки
ЛС64-2 Полиграфические матрицы
ЛС60-1 Гайки, болты, зубчатые колеса, втулки
ЛС59-1 Гайки, болты, зубчатые колеса, втулки
ЛЖС58-1-1 Детали, изготовляемые резанием
ЛК80-3 Коррозионностойкие детали машин
ЛМш68-0,05 Конденсаторные трубы
ЛАНКМц75- 2- 2,5- 0,5- 0,5 Пружины, манометрические трубы

Литейные латуни

Коррозионно стойкие,
обычно с хорошими антифрикционными свойствами
хорошие механические, технологические свойства
хорошая жидкотекучесть
малая склонность к ликвации

Источник статьи: http://dic.academic.ru/dic.nsf/ruwiki/13232

Латунь по ГОСТ: классификация, свойства, химсоставы

Латунь — сплав меди с цинком (от 5 до 45%). Латунь с содержанием от 5 до 20% цинка называется красной (томпаком), с содержанием 20–36% Zn – желтой. На практике редко используют латуни, в которых концентрация цинка превышает 45%.

Цинк более дешевый материал по сравнению с медью, поэтому его введение в сплав одновременно с повышением механических, технологических и антифрикационных свойств, приводит к снижению стоимости — латунь дешевле меди. Электропроводность и теплопроводность латуни ниже, чем меди.

Латунь — двойной и многокомпонентный медный сплав, с основным легирующим элементом — цинком. По сравнению с медью обладают более высокой прочностью и коррозионной стойкостью. Простые латуни обозначают буквой Л и цифрой, показывающей содержание меди в процентах. В специальных латунях после буквы Л пишут заглавную букву дополнительных легирующих элементов и через тире после содержания меди указывают содержание легирующих элементов в процентах. Латуни разделяют на литейные и деформируемые. Латуни, за исключением свинцовосодержащих, легко поддаются обработке давлением в холодном и горячем состоянии. Все латуни хорошо паяются твердыми и мягкими припоями.

Коррозионная стойкость латуней в атмосферных условиях оказывается средней между стойкостью элементов, образующих сплав, т.е. цинка и меди. Латунь, содержащая более 20% цинка, склонна к растрескиванию при вылеживании во влажной атмосфере (особенно, если присутствуют следы аммиака). Этот эффект часто называют «сезонное растрескивание». Наиболее заметен он в деформированных изделиях, поскольку коррозия распространяется по границам зерен. Для устранения этого явления после деформации латунь подвергают отжигу при 240 — 260 (°C).

Латуни обладают высокими технологическими свойствами и применяются в производстве различных мелких деталей, особенно там, где требуются хорошая обрабатываемость и формуемость. Из них получают хорошие отливки, так как латунь обладают хорошей текучестью и малой склонностью к ликвации. Латуни легко поддаются пластической деформации — основное их количество идет на изготовление катанных полуфабрикатов — листов, полос, лент, проволоки и разных профилей.

Обычно латуни делят на:

двухкомпонентные латуни («Простые»), состоящие только из меди, цинка и, в незначительных количествах, примесей.

Для двухкомпонентной латуни особое значение имеет фазовый состав сплава. Предел растворимости цинка в меди при комнатной температуре равен 39%. При повышении температуры он снижается и при 905 °C становится равным 32%. По этой причине латуни, содержащие цинка менее 39%, имеют однофазную структуру (a-фаза) твердого раствора цинка в меди. Их называют а-латунями. Если в расплав ввести больше цинка, то он не сможет полностью раствориться в меди, и после затвердевания возникнет вторая фаза – (b-фаза). b-фаза очень хрупка и тверда, поэтому двухфазные латуни имеют более высокую прочность и меньшую пластичность, чем однофазные.

При увеличении концентрации цинка до 30% возрастают одновременно и прочность, и пластичность. Затем пластичность уменьшается, вначале за счет усложнения твердого раствора, затем происходит резкое ее понижение, так как в структуре сплава появляется хрупкая b-фаза. Прочность увеличивается до концентрации цинка около 45%, а затем уменьшается так же резко, как и пластичность.

Большинство латуней хорошо обрабатывается давлением. Особенно пластичны однофазные латуни. Они деформируются при низких и при высоких температурах. Однако в интервале 300 — 700 (°C) существует зона хрупкости, поэтому при таких температурах латуни не деформируют.

Особенностью обработки латуней давлением является то, что для обработки в холодном состоянии (тонкие листы, проволока, калиброванные профили) используют a-латунь с содержанием цинка до 32%, так как она при комнатной температуре имеет высокую пластичность и малую прочность. При повышении температуры до 300-700 °C ее пластичность уменьшается, поэтому в горячем состоянии ее не обрабатывают. Для этой цели используют или b-латунь с большим содержанием цинка (до 39%), способную переходить при нагреве в двухфазное состояние a+b, либо (a+b)-латунь.

Марка латуни составляется из буквы «Л», указывающей тип сплава — латунь, и двузначной цифры, характеризующей среднее содержание меди. Например, марка Л80 — латунь, содержащая 80% Cu и 20% Zn.

многокомпонентные латуни («Специальные»)– кроме меди и цинка присутствуют дополнительные легирующие элементы

Количество марок многокомпонентных латуней больше, чем двухкомпонентных. Наименование специальной латуни отражает ее состав. Так, если она легирована железом и марганцем, то ее называют «Железомарганцевой», если алюминием – «Алюминиевой» и т.д.

Марку этих латуней составляют следующим образом: первой, как в простых латунях, ставится буква Л, вслед за ней — ряд букв, указывающих, какие легирующие элементы, кроме цинка, входят в эту латунь; затем через дефисы следуют цифры, первая из которых характеризует среднее содержание меди в процентах, а последующие — каждого из легирующих элементов в той же последовательности, как и в буквенной части марки. Порядок букв и цифр устанавливается по содержанию соответствующего элемента: сначала идет тот элемент, которого больше, а далее по нисходящей. Содержание цинка пределяется по разности от 100%. Например, марка ЛАЖМц66-6-3-2 расшифровывается так: латунь, в которой содержится 66% Cu, 6%A l, 3% Fe и 2% Mn. Цинка в ней 100-(66+6+3+2)=23%.

Основными легирующими элементами в многокомпонентных латунях являются алюминий, железо, марганец, свинец, кремний, никель. Они по-разному влияют на свойства латуней.

Марганец повышает прочность и коррозионную стойкость, особенно в сочетании с алюминием, оловом и железом.
Олово повышает прочность и сильно повышает сопротивление коррозии в морской воде. Латуни, содержащие олово, часто называют морскими латунями.
Никель повышает прочность и коррозионную стойкость в различных средах.
Свинец ухудшает механические свойства, но улучшает обрабатываемость резанием. Им легируют (1-2%) латуни, которые подвергаются механической обработке на станках-автоматах. Поэтому эти латуни называют автоматными.
Кремний ухудшает твердость, прочность. При совместном легировании кремнием и свинцом повышаются антифрикционные свойства латуни и она может служить заменителем более дорогих, например оловянных бронз, применяющихся в подшипниках скольжения.

Латуни по сравнению с бронзой обладают менее высокими прочностью, коррозионной стойкостью и антифрикционными свойствами. Они весьма стойки на воздухе, в морской воде, растворах большинства органических кислот, углекислых растворах.

Двойные деформируемые латуни

Л96 Радиаторные и капиллярные трубки
Л90 Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др.
Л85 Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др.
Л80 Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др.
Л70 Гильзы химической аппаратуры
Л68 Штампованные изделия
Л63 Гайки, болты, детали автомобилей, конденсаторные трубы
Л60 Толстостенные патрубки, гайки, детали машин

Многокомпонентные деформируемые латуни

ЛА77-2 Конденсаторные трубы морских судов
ЛАЖ60-1-1 Детали морских судов
ЛАН59-3-2 Детали химической аппаратуры, электромашин, морских судов
ЛЖМа59-1-1 Вкладыши подшипников, детали самолетов, морских судов
ЛН65-5 Манометрические и конденсаторные трубки
ЛМц58- 2 Гайки, болты, арматура, детали машин
ЛМцА57- 3-1 Детали морских и речных судов
Л090-1 Конденсаторные трубы теплотехнической аппаратуры
Л070-1 То же
Л062-1 То же
Л060-1 Конденсаторные трубы теплотехнической аппаратуры
ЛС63-3 Детали часов, втулки
ЛС74-3 То же
ЛС64-2 Полиграфические матрицы
ЛС60-1 Гайки, болты, зубчатые колеса, втулки
ЛС59-1
ЛС59-1В То же
ЛЖС58-1-1 Детали, изготовляемые резанием
ЛК80-3 Коррозионностойкие детали машин
ЛМш68-0,05 Конденсаторные трубы
ЛАМш77-2-0,05 То же
ЛОМш70-1-0,05 То же
ЛАНКМц75- 2- 2,5- 0,5- 0,5 Пружины, манометрические трубы

Литейные латуни

ЛЦ16К4 Детали арматуры
ЛЦ23А6ЖЗМц2 Массивные червячные винты, гайки нажимных винтов
ЛЦЗОАЗ Коррозионно-стойкие детали
ЛЦ40С Литые детали арматуры, втулки, сепараторы, подшипники
ЛЦ40МцЗЖ Детали ответственного назначения, работающие при температуре до 300 °С
ЛЦ25С2 Штуцера гидросистемы автомобилей

Латуни обладают сравнительно высокими механическими свойствами и удовлетворительной коррозионной устойчивостью и, будучи наиболее дешевыми из медных сплавов, имеют широкое распространение во многих отраслях машиностроения.

Латунь подразделяют на двойные и многокомпонентные. Двойные медно цинковые сплавы — простые или двойные латуни, многокомпонентные — специальные латуни. Двойные латуни, содержащие 88 — 97% меди, называют томпаком, а содержащие 79 — 80% меди — полутомпаком. Название специальных латуней дается по дополнительному легирующему элементу (кроме цинка), например, латунь, содержащую, кроме цинка, алюминий, называют алюминиевой латунью и т.п. По технологическому принципу различают деформируемые и литейные латуни.

Полуфабрикаты из деформируемых латуней изготовляют в следующих состояниях: мягкое (отожженные), полутвердое (обжатие 10-30%), твердое (обжатие более 30%) и особотвердое (обжатие боле 50%). Литейные латуни выплавляют как из первичных, так и из вторичных металлов (вторичные латуни).

В качестве дополнительных легирующих добавок в специальные латуни вводят алюминий, кремний, олово, никель, марганец, железо и свинец. Указанные добавки (кроме свинца) повышают коррозионную стойкость, прочность, жидкотекучесть, измельчают зерно латуни; свинец сильно улучшает обрабатываемость резанием.

Латуни, содержащие более 20% цинка, в деформированном состоянии склонны к коррозионному ( самопроизвольному) растеканию при хранении. Для предупреждения растекания изделия, изготовленные из латуни, следует подвергать низкотемпературному отжигу при 250 — 300 °С.

Химический состав и назначение латуней, физические и механические свойства, виды полуфабрикатов приводятся в следующих таблицах:

Таблица 1. Химический состав в % и виды полуфабрикатов деформируемых простых латуней (по ГОСТ 1019-47)

Марка Компоненты Примеси (не более) Полуфабрикаты
Cu Zn Pb Fe Sb Bi P Всего
Л 96 95,0-97,0 О
с
т
а
л
ь
н
ы
е
0,03 0,10 0,005 0,002 0,01 0,2 Радиаторные трубки
Л 90 88,0-91,0 0,03 0,10 0,005 0,002 0,01 0,2 Листы; ленты для плакировки
Л 85 84,0-86,0 0,03 0,10 0,005 0,002 0,01 0,3 Трубы гофрированные
Л 80 79,0-81,0 0,03 0,10 0,005 0,002 0,01 0,3 Листы, ленты и проволока
Л70 69,0-72,0 0,03 0,07 0,002 0,002 0,005 0,2 Полосы и ленты
Л68 67,0-70,0 0,03 0,10 0,005 0,002 0,002 0,3 Полосы, листы, ленты, трубы и проволока
Л62 60,5-63,5 0,08 0,15 0,005 0,002 0,002 0,5 Полосы, листы, ленты, трубы, прутки проволока

Примечание:
1. В латуни марки Л70, кроме перечисленных примесей, может быть не более 0,005 As, 0,005 Sn и 0,002 S.
2. В антимагнитных латунях содержание железа 3 8,85 8,78 8,75 8,06 8,62 8,60 8,43 Модуль упругости в кГ/мм 2 мягкий латуни — — — 10 600 — 11 000 10 000 твердой латуни 11 400 10 500 10 500 11 400 11 200 11 500 — Коэффициент линейного расширения Х 10 6 1/°С 17,0 17,0 18,7 18,8 18,9 19,0 20,6 Удельная теплоемкость в кал/г · °С 0,093 0,09 0,092 0,093 0,09 0,093 0,092 Теплопроводность в кал/см · сек · °С 0,592 0,40 0,36 0,34 0,29 0,28 0,26 Температура горячей обработки в °С 700-850 700-850 750-850 750-850 750-850 750-850 750-850 Температура отжига в °C 450-650 450-650 450-650 450-650 450-650 450-650 450-650

Таблица 3. Химический состав в % и виды полуфабрикатов специальных латуней (по ГОСТ 1019-47)

Наименование латуни Марка Содержание компонентов, % Полуфабрикаты
Cu Al Sn Si Pb Fe Mn Ni
Алюминиевая ЛА77-2 76,0-79,0 1,75-2,50 Трубы конденсаторные
Алюминиево — железистая ЛАЖ60-1-1 58,0-61,0 0,75-1,50 0,75-1,50 0,1-0,6 Трубы и прутки
Алюминиево — никелевая ЛАН59-3-2 57,0-60,0 2,5-3,50 2,0-3,0 Трубы и прутки
Никелевая ЛН65-5 64,0-67,0 5,0-6,0 Трубки манометрические, проволока, листы и ленты
Железисто- марганцовистая ЛЖМц59-1-1 57,0-60,0 0,1-0,2 0,3-0,7 0,6-1,2 0,5-0,8 полосы, прутки, проволока и трубы
Марганцовистая ЛМц58-2 57,0-60,0 1,0-2,0 Полосы, прутки, проволока и листы
Марганцовисто — алюминиевая ЛМцА57-5-1 55,0-58,0 0,5-1,5 2,5-3,5 Поковки
Томпак оловянистый ЛО90-1 88,0-91,0 0,25-0,75 Полосы и ленты
Оловянистая ЛО70-1
ЛО62-1
ЛО60-1
69,0-71,0
61,0-63,0
59,0-61,0


1,0-1,5
0,7-1,1
1,0-1,5










Трубы
Прутки, листы и полосы
Проволока для сварки
Свинцовистая ЛС74-3
ЛС64-2
ЛС63-3
ЛС60-1
ЛС59-1
ЛС59-1В
72,0-75,0
63,0-66,0
62,0-65,0
59,0-61,0
57,0-60,0
57,0-61,0















2,4-3,0
1,5-2,0
2,4-3,0
0,6-1,0
0,8-1,9
0,8-1,9















Полосы, ленты, прутки
для часового производства
Прутки
Листы, полосы, ленты,
прутки, проволока, трубы
Прутки
Железисто — свинцовистая ЛЖС58-1-1 56,0-58,0 0,7-1,3 0,7-1,3 Прутки
Кремнистая ЛК80-3 79,0-81,0 2,5-4,0 Поковки и штамповки

Таблица 4. Основные физические, механические и технологические свойства специальных латуней

Марка Плотность
Г/см 2
Коэффициент
линейного расширения
10 6 , 1 °С
Температура плавления
°С
Тепло-
проводность
кн/см · сек
Удельное электро-
сопротивление
ом · мм 2 /м
Модуль упругости
кГ/мм 2
σ
кГ/мм 2
δ
%
Температура горячей обработки
°С
Температура отжига
°С
ЛА 77-2 8,6 18,3 1000 0,27 0,075 38 50 700-770 600-650
ЛАЖ 60-1-1 8,2 21,6 904 0,09 10 500 42 50 700-800 600-700
ЛАН 59-3-2 8,4 19,0 956 0,20 0,078 10 000 50 42 700-800 600-650
ЛН 65-5 8,7 18,2 960 0,14 0,146 11 200 38 65 750-870 600-650
ЛЖМц 59-1-1 8,5 22,0 900 0,24 0,093 10 600 45 50 650-750 600-650
ЛМц 58-2 8,5 21,2 880 0,17 0,118 10 000 44 36 650-750 600-650
ЛМц А 57-3-1 52 30 650-750 600-700
ЛО 90-1 8,8 18,4 1015 0,30 0,054 10 500 28 50 700-800 550-650
ЛО 70-1 8,5 19,7 935 0,22 0,072 10 600 35 60 650-750 550-650
ЛО 62-1 8,5 19,3 906 0,26 0,072 10 000 38 40 700-750 550-650
ЛО 60-1 8,4 21,4 900 0,24 0,070 10 500 38 40 750-800 550-650
ЛС 74-3 8,7 19,8 965 0,29 0,078 10 500 35 45 600-650
ЛС 64-2 8,5 20,3 910 0,28 0,066 10 500 34 55 600-650
ЛС 63-3 8,5 20,5 905 0,28 0,066 10 500 35 45 600-650
ЛС 60-1 8,5 20,8 900 0,25 0,064 10 500 35 50 600-650
ЛС 59-1 8,5 20,6 900 0,25 0,68 10 500 42 45 640-780 600-650
ЛК 80-3 8,6 17,0 900 0,1 0,2 9 800 34 55 750-850 500-600

Таблица 5. Механические свойства и сортамент латунных листов и полос (по ГОСТ 931-52 и 6688-53)

Вид, размеры и состояние полуфабрикатов Марка латуни σ, кГ/мм 2 δ, % Глубина продавливания по Эриксену (пуансон диаметром 100 мм) при толщине листов, мм
0,4-0,45 0,5 0,6-0,1 1,2-1,5
Листы и полосы холоднокатаные мягкие: размеры листов: толщина 0,4-10 мм, ширина и длина 600х1500, 710х1410 и 1000х2000 мм ; размеры полос: толщина 0,4-10 мм, ширина 40-500 мм Л 68
Л62
ЛМц 58-2
Лс 59-1
30
30
39
35
40
40
30
25
>= 10
>= 9,5

>= 11
>= 9,5

>= 11,5
>= 10,0

>= 12,5
>= 10,5

Листы и полосы полутвердые Л 68
Л 62
ЛМц 58-2
36
35
45
25
20
25
8-10
7-9
9-11
7-9
9,5-11,5
7,5-9,5
11-13
8-10
Листы и полосы холоднокатаные твердые Л 68
Л 62
ЛМц 58-2
ЛО 62-1
ЛС 59-1
40
42
60
40
45
15
10
3
5
6
7-9
5-7


7-9
5-7


7,5-9,5
5,5-7,5






Полосы особо твердые Л 62 60 2,5
Листы горячекатаные: толщина 5-22 мм, ширина и длина 600х1500, 710х1410 и 1000х2000 мм Л 62
ЛО 62-1
ЛС 59-1
30
35
35
30
20
25








Полосы (толщина 1,5х8,0 мм, ширина 20-90 мм);
ЛС 63-3
мягкие
полутвердые
твердые
особотвердые
30
35-44
60
64
40

6
>= 5












Полосы прямоугольные прессованные размером от 5х20 до 25х60 Л 62
ЛЖМц59-1-1
ЛМц58-2
ЛО 62-1
ЛС 59-1
30
44
43
35
38
30
31
25
25
21
















6. Механические свойства латунных лент (по ГОСТ 2208-49)

Марка латуни Состояние материала σ, кГ/мм 2 δ, % Глубина продавливания по Эриксену (пуансон диаметром 10мм) при толщине лент, мм
До 0,25 0,3-0,55 0,6-1,1 1,2-1,6 1,7-2,0
Л 68
Л 62
ЛМ 58-2
ЛС 59-1
ЛС 63-3*
Мягкое 30
30
39
35
30
40
35
30
25
40
>= 9
>= 7,5


>= 11
>= 9,5


>= 11,5
>= 10


>= 12
>= 10,5


>= 12,5
>= 11,0


Л 68
Л62
ЛМц 58-2
ЛС 63-3*
Полутвердое 35
38
45
35-44
25
20
25
7-9
5,5-7,5

9-11
7,5-9,5

9,5-11,5
8-10

10-12
8,5-10,5

10,5-12,5
9-11

Л 68
Л62
ЛС 59-1
ЛМц 58-2
ЛС 63-3*
Твердое 40
42
45
60
44-54
15
10
5
3
6
5-7
3-5


7-9
5,5-7,5


7,5-9,5
6-8










Л 68
л 62
ЛС 63-3
Особотвердое 50
60
64
4
2,5
>= 5










Таблица 7. Механические свойства круглых, квадратных или шестигранных прутков из латуни (по ГОСТ 2060-60)

Марка латуни Состояние прутков Диаметр круглых или диаметр вписанной окружности
квадратных и шестигранных прутков в мм
σ, кГ/мм 2 δ, % Область применения
не менее
Л 62 Тянутые
Прессованные
5-40
10-160
38
30
15
30
Во всех отраслях машиностроения
ЛС 59-1 Тянутые
Прессованные
10-160
5-40
30
40
30
12
Во всех отраслях машиностроения
ЛС 63-3 Тянутые (твердые)
Тянутые
Полутвердые
5-9,5
10-14
15-20
60
55
50
1
1
1
Для деталей часов
ЛО 62-1 Тянутые
Прессованные
5-40
10-160
40
37
15
20
В морском судостроении
ЛЖС 58-1-1 Тянутые
Прессованные
5-40
10-160
45
30
10
20
Для деталей часов
ЛМц 58-2 Тянутые
Прессованные
5-12
13-40
45
42
20
20
В судостроении
ЛЖМц 59-1-1 Тянутые
Прессованные
5-12
Св. 12-40
50
45
15
17
В судостроении
ЛАЖ 60-1-1 Прессованные 10-160 45 18 В самолетостроении

Таблица 8. Механические свойства проволоки из латуни (по ГОСТ 1066-58)

Марка латуни Диаметр проволоки в мм σ в в кГ/мм 2 проволока в состоянии δ в % при состоянии проволоки
мягком полутвердом твердом мягком полутвердом твердом
Л 68 0,10-0,18
0,20-0,75
0,80-1,4
1,50-12
38
35
32
30

40
38
35
70-95
70-95
60-80
55-75
20
25
30
40

5
10
15



Л 62 0,1-0,18
0,20-0,50
0,55-1,0
1,10-4,8
5-12
35
35
35
35
32

45
45
40
36
75-95
70-95
70-90
60-80
55-75
18
20
26
30
34

5
5
10
12




ЛС 59-1 2-4,8
5-12
35
35
40
40
45-65
45-65
30
30

5
8

Таблица 9. Механические свойства и сортамент латунных труб (по ГОСТ 494-52)

Марка латуни Наименование, состояние и размеры труб σ в в кГ/мм 2 δ в %
Л 62
Л 68
ЛО 70-1
Трубы тянутые мягкие диаметром 3-100 мм 30
30
30
30
30
30
Л 62
Л 68
ЛО 70-1
Трубы тянутые полутвердые 34
35
35
30
30
30
Л 62
ЛС 59-1
ЛЖМц 59-1-1
Трубы прессованные диаметром 21-195 мм 30
40
44
38
20
28
Л 96* Трубки радиаторные шестигранные и круглые 35-60
Л 96** Tрубки мягкие капиллярные с внутренним диаметром 0,35-0,50 мм и наружным диаметром 1,2-2,5 мм
Л 80*** Трубки тонкостенные для сильфонов диаметром 8-80 мм, толщиной стенки 0,07-0,6 мм

* По ГОСТ 529-41, ** По ГОСТ 2624-44, *** По ГОСТ 5685-51.

Таблица 10. Состав, механические свойства и назначение литейных латуней (по ГОСТ 1019-47)

0,8-1,0
Марка латуни Химический состав Плотность
г/см 3
Механические свойства Назначение
Cu Al Fe Mn Si Sn Pb Zn σв
г/мм 2
δ
%
ЛА67-2.5 66-68 2-3 О
с
т
а
л
ь
н
о
е
8,5 40(кг)
30(кг)
15(кг)
12(кг)
Для изготовления коррозионностойких деталей
ЛАЖМц66-6-3-2 64-68 6-7 2,0-4,0 1,5-2,5 8,5 65(к)
60(з)
70(ц)
7(к)
7(з)
7(ц)
Для изготовления гаек, нажимных винтов, червяных винтов и других деталей, работающих в тяжелых условиях
ЛАЖ60-1-1Л 58-61 0,75-1,5 0,75-1,5 1,0-0,6 0,2-0,7 8,5 42(к)
98(з)
18(к)
20(з)
Для изготовления арматуры втулок и вкладышей подшипников
ЛК80-3Л 79-81 2,5-4,5 8,5 30(к)
25(з)
15(к)
10(з)
Для изготовления арматуры и других деталей в судостроении
ЛКС 80-3-3 79-81 2,5-4,5 2,0-4,0 8,5 30(к)
25(з)
15(к)
7(з)
Для изготовления вкладышей подшипников и втулок
ЛМц58-2-2 57-60 1,5-2,5 1,5-2,5 8,5 35(к)
25(з)
8(к)
10(з)
Для изготовления вкладышей подшипников втулок и других антифрикционных деталей
ЛМцОС58-2-2-2 56-60 1,5-2,5 1,5-2,5 0,5-2,5 8,5 30(к)
30(з)
4(к)
6(з)
Для изготовления зубчатых колес
ЛМцЖ55-2-1 53-58 0,5-1,5 3-4 8,5 50(к)
45(з)
10(к)
15(з)
ЛМцЖ82-4-1 50-55 0,5-1,5 4-5 8,5 50(к)
50(к)
15(к)
15(к)
Подшипники и арматура
ЛС59-1Л 57-61 8,5 20(к) 20(ц) Втулки для шарикоподшипников

Примечание:
Условные обозначения:
к — литье в кокиль,
з — литье в землю,
ц — центробежное литье.

Таблица 11. Физико — механические свойства литейных латуней

Основные свойства Марка латуни
ЛА 67-2,5 ЛАЖМц66-3-3-2 ЛАЖ60-1-1л ЛК80-3л ЛКС80-3-3 ЛМцС56-2-2 ЛМцОС58-2-2-2-2 ЛМцЖ52-4-1 ЛМцЖ55-3-4 ЛС59-1-л
Температура ликвидуса в °С 995 899 904 900 900 890 890 870 880 885
Коэффициент линейного расширения х 10 -6 , 1/°С 19,8 21,6 17 17 21 22 20,1
Теплопроводность в кал/см· сек · °С 0,27 0,12 0,27 0,26 0,26 0,24 0,26
σв в кГ/мм 2 при:
20 °С
200 °С
300 °С
400 °С
35


65


40


40
40
40
30
35


36
40
33
24
35


50
50
34
32
50


35
37
26
23
δ10 в % при:
20 °С
200 °С
300 °С
400 °С
15


7


20


20
22
17
17
20


20
20
22
24
6


20

24
28



40
43

28
σ Т в кГ/мм 2 25 16 14 24 30 15
αн в кГм/см 2 12 4 7,0 2,6
Твердость НВ 90 90 105 95 80 95 120 105 85
Линейная усадка в % 1,7 1,7 1,8 1,7 1,6 2,23
Коэффициент трения в паре с осевой сталью:
со смазкой
без смазки



0,01
0,19
0,009
0,15
0,16
0,24



Таблица 12. Химический состав в % и маркировка вторичных латуней (по ГОСТ 1020-60)

Источник статьи: http://tehtab.ru/Guide/GuideMatherials/Metalls/CooperBronsesAndBrasses/Brass/BrassToGostOverview/


0 0 голоса
Article Rating
Подписаться
Уведомить о
guest

0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии