Меню Рубрики

Как пишется кремний в таблице менделеева

Как пишется кремний в таблице менделеева

Кремний (лат. silicium), si, химический элемент iv группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086. В природе элемент представлен тремя стабильными изотопами: 28 si (92,27%), 29 si (4,68%) и 30 si (3,05%).

Историческая справка. Соединения К., широко распространённые на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений К., связанное с их переработкой, — изготовление стекла — началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение К. — двуокись sio 2 (кремнезём). В 18 в. кремнезём считали простым телом и относили к «землям» (что и отражено в его названии). Сложность состава кремнезёма установил И. Я. Берцелиус . Он же впервые, в 1825, получил элементарный К. из фтористого кремния sif 4 , восстанавливая последний металлическим калием. Новому элементу было дано название «силиций» (от лат. silex — кремень). Русское название ввёл Г. И. Гесс в 1834.

Распространённость в природе. По распространённости в земной коре К. — второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре К. играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии К. важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезём sio 2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезём, превышает 400.

При магматических процессах происходит слабая дифференциация К.: он накапливается как в гранитоидах (32,3%), так и в ультраосновных породах (19%). При высоких температурах и большом давлении растворимость sio 2 повышается. Возможна его миграция и с водяным паром, поэтому для пегматитов гидротермальных жил характерны значительные концентрации кварца, с которым нередко связаны и рудные элементы (золото-кварцевые, кварцево-касситеритовые и др. жилы).

Физические и химические свойства. К. образует тёмно-серые с металлическим блеском кристаллы, имеющие кубическую гранецентрированную решётку типа алмаза с периодом а = 5,431 a , плотностью 2,33 г/см 3 . При очень высоких давлениях получена новая (по-видимому, гексагональная) модификация с плотностью 2,55 г/см 3 . К. плавится при 1417°С, кипит при 2600°С. Удельная теплоёмкость (при 20—100°С) 800 дж/ ( кг ? К ), или 0,191 кал/ ( г ? град ) ; теплопроводность даже для самых чистых образцов не постоянна и находится в пределах (25°С) 84—126 вт/ ( м ? К ), или 0,20—0,30 кал/ ( см ? сек ? град ) . Температурный коэффициент линейного расширения 2,33 ? 10 -6 К -1 ; ниже 120k становится отрицательным. К. прозрачен для длинноволновых ИК-лучей; показатель преломления (для l =6 мкм ) 3,42; диэлектрическая проницаемость 11,7. К. диамагнитен, атомная магнитная восприимчивость —0,13 ? 10 -6 . Твёрдость К. по Моосу 7,0, по Бринеллю 2,4 Гн/м 2 (240 кгс/мм 2 ) , модуль упругости 109 Гн/м 2 (10890 кгс/мм 2 ) , коэффициент сжимаемости 0,325 ? 10 -6 см 2 /кг. К. хрупкий материал; заметная пластическая деформация начинается при температуре выше 800°С.

К. — полупроводник, находящий всё большее применение. Электрические свойства К. очень сильно зависят от примесей. Собственное удельное объёмное электросопротивление К. при комнатной температуре принимается равным 2,3 ? 10 3 ом ? м (2,3 ? 10 5 ом ? см ) .

Полупроводниковый К. с проводимостью р -типа (добавки В, al, in или ga) и n -типа (добавки Р, bi, as или sb) имеет значительно меньшее сопротивление. Ширина запрещенной зоны по электрическим измерениям составляет 1,21 эв при 0 К и снижается до 1,119 эв при 300 К .

В соответствии с положением К. в периодической системе Менделеева 14 электронов атома К. распределены по трём оболочкам: в первой (от ядра) 2 электрона, во второй 8, в третьей (валентной) 4; конфигурация электронной оболочки 1s 2 2s 2 2p 6 3s 2 3p 2. Последовательные потенциалы ионизации ( эв ): 8,149; 16,34; 33,46 и 45,13. Атомный радиус 1,33 a , ковалентный радиус 1,17 a , ионные радиусы si 4+ 0,39 a , si 4- 1,98 a .

В соединениях К. (аналогично углероду) 4-валентен. Однако, в отличие от углерода, К. наряду с координационым числом 4 проявляет координационное число 6, что объясняется большим объёмом его атома (примером таких соединений являются кремнефториды, содержащие группу [sif 6 ] 2- ).

Химическая связь атома К. с другими атомами осуществляется обычно за счёт гибридных sp 3 -орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3 d- орбиталей, особенно когда К. является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), К. в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом si—o, равная 464 кдж/моль (111 ккал/моль ) , обусловливает стойкость его кислородных соединений (sio 2 и силикатов). Энергия связи si—si мала, 176 кдж/моль (42 ккал/моль ) ; в отличие от углерода, для К. не характерно образование длинных цепей и двойной связи между атомами si. На воздухе К. благодаря образованию защитной окисной плёнки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400°С, образуя кремния двуокись sio 2 . Известна также моноокись sio, устойчивая при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твёрдый продукт, легко разлагающийся на тонкую смесь si и sio 2 . К. устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. К. реагирует с фтором при комнатной температуре, с остальными галогенами — при нагревании с образованием соединений общей формулы six 4. Водород непосредственно не реагирует с К., и кремневодороды (силаны) получают разложением силицидов (см. ниже). Известны кремневодороды от sih 4 до si 8 h 18 (по составу аналогичны предельным углеводородам). К. образует 2 группы кислородсодержащих силанов — силоксаны и силоксены. С азотом К. реагирует при температуре выше 1000°С. Важное практическое значение имеет нитрид si 3 n 4 , не окисляющийся на воздухе даже при 1200°С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и др. Высокой твёрдостью, а также термической и химической стойкостью отличаются соединения К. с углеродом ( кремния карбид sic) и с бором (sib 3 , sib 6 , sib 12 ). При нагревании К. реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с ch 3 cl) с образованием органогалосиланов [например, si (ch 3 ) 3 ci], служащих для синтеза многочисленных кремнийорганических соединений .

К. образует соединения почти со всеми металлами — силициды (не обнаружены соединения только с bi, tl, pb, hg). Получено более 250 силицидов, состав которых (mesi, mesi 2 , me 5 si 3 , me 3 si, me 2 si и др.) обычно не отвечает классическим валентностям. Силициды отличаются тугоплавкостью и твёрдостью; наибольшее практическое значение имеют ферросилиций и силицид молибдена mosi 2 (нагреватели электропечей, лопатки газовых турбин и т. д.).

Получение и применение. К. технической чистоты (95—98%) получают в электрической дуге восстановлением кремнезёма sio 2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого К. Это требует предварительного синтеза чистейших исходных соединений К., из которых К. извлекают путём восстановления или термического разложения.

Чистый полупроводниковый К. получают в двух видах: поликристаллический (восстановлением sici 4 или sihcl 3 цинком или водородом, термическим разложением sil 4 и sih 4 ) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного К. — метод Чохральского).

Специально легированный К. широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, управляемые диоды — тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку К. прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике.

К. имеет разнообразные и всё расширяющиеся области применения. В металлургии К. используется для удаления растворённого в расплавленных металлах кислорода (раскисления). К. является составной частью большого числа сплавов железа и цветных металлов. Обычно К. придаёт сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании К. может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие К. Всё большее количество К. идёт на синтез кремнийорганических соединений и силицидов. Кремнезём и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и др. отраслями промышленности.

Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твёрдых скелетных частей и тканей. Особенно много К. могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения двуокиси кремния. В холодных морях и озёрах преобладают биогенные илы, обогащенные К., в тропических морях — известковые илы с низким содержанием К. Среди наземных растений много К. накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание двуокиси кремния в зольных веществах 0,1—0,5%. В наибольших количествах К. обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г К. При высоком содержании в воздухе пыли двуокиси кремния она попадает в лёгкие человека и вызывает заболевание — силикоз .

Лит.: Бережной А. С., Кремний и его бинарные системы. К., 1958; Красюк Б. А., Грибов А. И., Полупроводники — германий и кремний, М., 1961; Реньян В. Р., Технология полупроводникового кремния, пер. с англ., М., 1969; Салли И. В., Фалькевич Э. С., Производство полупроводникового кремния, М., 1970; Кремний и германий. Сб. ст., под ред. Э. С. Фалькевича, Д. И. Левинзона, в. 1—2, М., 1969—70; Гладышевский Е. И., Кристаллохимия силицидов и германидов, М., 1971; wolf Н. f., silicon semiconductor data, oxf. — n. y., 1965.

Источник статьи: http://www.h2o.u-sonic.ru/table/si.htm

Как пишется кремний в таблице менделеева

Кремний — восьмой элемент по массе но очень редко встречается в природе в чистом виде. В основном кремний можно найти в кремнеземах и песке в форме силикатов (диоксид кремния). Более 90 % земной коры состоит из минеральных силикатов что делает кремний вторым по распространенности элементом в земной коре после кислорода (O2).

История открытия

С природными соединениями кремния человек знаком еще с древнейших времен. Им были известны такие минералы как кварц или горный хрусталь, а также халцедон, топаз, оникс (все эти минералы есть ни что иное как окрашенный кварц). Основу всех этих минералов составляет оксид кремния, или кремнезём. Разложить кремнезём на кремний и кислород не представлялось возможным. Это соединение очень тугоплавкое, необходимо нагреть до температуры выше 1500 градусов Цельсия. Предпринимались попытки получить кремний взаимодействием с другими веществами. Например, Берцеллиус нагревал кремнезём вместе с порошком из железа и углеродом. Но получался сплав ферросицилий.

И лишь только в 1823 году был получен чистый кремний, имеется в виду свободный. Изучая соединения плавиковой кислоты Сент Клер-Девилль, в том числе и тетрафторид кремния SiF4,он провел опыт с калием и получил аморфный кремний.

Характеристика элемента

В соответствии с положением Кремния в периодической системе Менделеева 14 электронов атома Кремния распределены по трем оболочкам: в первой (от ядра) 2 электрона, во второй 8, в третьей (валентной) 4; конфигурация электронной оболочки 1s 2 2s 2 2p 6 3s 2 3p 2 . Последовательные потенциалы ионизации (эв): 8,149; 16,34; 33,46 и 45,13. Атомный радиус 1,ЗЗÅ, ковалентный радиус 1,17Å, ионные радиусы Si 4+ 0,39Å, Si 4- 1,98Å.

Тип химического элемента — неметалл, p-элемент.

Высший оксид SiO2 — кислотный

Высший гидроксид H2SiO3 — кислота

Максимальная степень окисления равна +4, минимальная — 4.

Химические свойства

В соединениях Кремний (аналогично углероду) 4-валентен. Однако, в отличие от углерода, Кремний наряду с координационным числом 4 проявляет координационное число 6, что объясняется большим объемом его атома (примером таких соединений являются кремнефториды, содержащие группу [SiF6] 2- ).

Химическая связь атома Кремния с другими атомами осуществляется обычно за счет гибридных sр 3 -орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3d-орбиталей, особенно когда Кремний является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), Кремний в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом Si — О, равная 464 кДж/молъ (111 ккал/молъ), обусловливает стойкость его кислородных соединений (SiO2 и силикатов). Энергия связи Si — Si мала, 176 кДж/молъ (42 ккал/моль); в отличие от углерода, для Кремния не характерно образование длинных цепей и двойной связи между атомами Si. На воздухе Кремний благодаря образованию защитной оксидной пленки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400 °С, образуя оксид кремния (IV) SiO2. Известен также оксид кремния (II) SiO, устойчивый при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твердый продукт, легко разлагающийся на тонкую смесь Si и SiO2. Кремний устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. Кремний реагирует с фтором при комнатной температуре, с остальными галогенами — при нагревании с образованием соединений общей формулы SiX4. Водород непосредственно не реагирует с Кремнием, и кремневодороды (силаны) получают разложением силицидов (см. ниже). Известны кремневодороды от SiH4 до Si8H18 (по составу аналогичны предельным углеводородам). Кремний образует 2 группы кислородсодержащих силанов — силоксаны и силоксены. С азотом Кремний реагирует при температуре выше 1000 °С, Важное практическое значение имеет нитрид Si3N4, не окисляющийся на воздухе даже при 1200 °С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и других. Высокой твердостью, а также термической и химической стойкостью отличаются соединения Кремния с углеродом (карбид кремния SiC) и с бором (SiB3, SiB6, SiB12). При нагревании Кремний реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с СН3Сl) с образованием органогалосиланов [например, Si(СН3)3Cl], служащих для синтеза многочисленных кремнийорганических соединений.

Кремний образует соединения почти со всеми металлами — силициды (не обнаружены соединения только с Bi, Tl, Pb, Hg). Получено более 250 силицидов, состав которых (MeSi, MeSi2, Me5Si3, Me3Si, Me2Si и других) обычно не отвечает классическим валентностям. Силициды отличаются тугоплавкостью и твердостью; наибольшее практическое значение имеют ферросилиций (восстановитель при выплавке специальных сплавов, см. Ферросплавы) и силицид молибдена MoSi2 (нагреватели электропечей, лопатки газовых турбин и т. д.).

Физические свойства

Кремний образует темно-серые с металлическим блеском кристаллы, имеющие кубическую гранецентрированную решетку типа алмаза с периодом а = 5.431Å, плотностью 2,33 г/см 3 . При очень высоких давлениях получена новая (по-видимому, гексагональная) модификация с плотностью 2,55 г/см 3 . Кремний плавится при 1417 °С, кипит при 2600 °С. Удельная теплоемкость (при 20-100 °С) 800 Дж/(кг·К), или 0,191 кал/(г·град); теплопроводность даже для самых чистых образцов не постоянна и находится в пределах (25 °С) 84-126 вт/(м·К), или 0,20-0,30 кал/(см·сек·град). Температурный коэффициент линейного расширения 2,33·10 -6 К -1 , ниже 120 К становится отрицательным. Кремний прозрачен для длинноволновых ИК-лучей; показатель преломления (для λ = 6 мкм) 3,42; диэлектрическая проницаемость 11,7. Кремний диамагнитен, атомная магнитная восприимчивость -0,13-10 -6 . Твердость Кремния по Моосу 7,0, по Бринеллю 2,4 Гн/м 2 (240 кгс/мм 2 ), модуль упругости 109 Гн/м 2 (10 890 кгс/мм 2 ), коэффициент сжимаемости 0,325·10 -6 см 2 /кг. Кремний хрупкий материал; заметная пластическая деформация начинается при температуре выше 800°С.

Кремний — полупроводник, находящий большое применение. Электрические свойства Кремния очень сильно зависят от примесей. Собственное удельное объемное электросопротивление Кремния при комнатной температуре принимается равным 2,3·10 3 ом·м (2,3·10 5 ом·см).

Полупроводниковый Кремний с проводимостью р-типа (добавки В, Al, In или Ga) и n-типа (добавки Р, Bi, As или Sb) имеет значительно меньшее сопротивление. Ширина запрещенной зоны по электрическим измерениям составляет 1,21 эв при 0 К и снижается до 1,119 эв при 300 К.

Простое вещество

Жидкое стекло — это водный раствор силиката натрия или калия. Силикат натрия получается сплавлением кварцевого песка со щелочью (NaOH) или содой (Na2CO3) или кипячением смеси кварца с NaOH под давлением. Коммерческий продукт содержит Na2SiO3 с непостоянной примесью SiO2. Растворимое стекло широко используется как наполнитель в мылах. Некоторые моющие средства тоже содержат силикат натрия. Жидкое стекло используют для придания влаго- и огнестойкости деревянным строениям, в технологии кислото- и огнеупорного цемента и бетона, керосинонепроницаемых штукатурок по бетону, для пропитывания тканей, для приготовления огнезащитных красок по дереву, для химического укрепления слабых грунтов.

Гидриды. Подобно углероду кремний образует ковалентные связи Si — Si и Si — H. Соединения, в которых атомы кремния соединены одинарной связью, называются силанами, а если атомы кремния соединены двойной связью, — силенами. Подобно углеводородам эти соединения образуют цепи и кольца. SiH4 называется моносилан, Si2H6, — дисилан, Si3H8, — трисилан, Si4H10, — тетрасилан и т.д. Соединения, в которых атомы кремния соединены через атом кислорода, называются силоксанами, а через атомы серы — силазанами. Силаны и силены могут образовывать связь с углеводородными радикалами и галогенами, например, метилдихлорсилан CH3SiHCl2. Все силаны могут самовозгораться, образуют взрывчатые смеси с воздухом и легко реагируют с водой.

Монокристаллический кремний. Отличается от поликристаллической модификации тем, что в нем кристаллическая структура ориентирована в определенной кристаллографической плоскости.

В монокремнии кристаллическая структура однородна, без границ зерен (что заметно даже по внешнему виду). Упорядоченное расположение атомов кремния в монокристаллической решетке кремния создает четкую зонную структуру. Каждый атом кремния имеет 4 электрона на внешней оболочке. Электроны соседних атомов образуют пары, принадлежащие обоим атомам одновременно, таким образом, каждый атом имеет 4 связи с соседними атомами.

Поведение монокристаллического кремния хорошо предсказуемо, однако, из-за низкой скорости роста и сложности процесса производства он является самым дорогостоящим видом кремния. Монокристаллический кремний является основой современной электронной техники. К нему предъявляются чрезвычайно высокие требования по чистоте и совершенству структуры. Концентрации электрически активных легирующих примесей обычно находятся в пределах 10 13 , — 10 18 см³, электрически активных фоновых примесей — менее 10 15 см³, а электрически неактивных примесей — менее 10 18 , — 10 19 см³. Основными типами структурных дефектов являются так называемые микродефекты. Как правило, они представляют собой мелкие дислокационные петли или кластеры собственных и примесных точечных дефектов.

Мультикристаллический кремний. Занимает промежуточное положение между поли- и мнокристаллическим кремнием по размеру и количеству кристаллов. Вырастить мультикристаллы кремния гораздо проще, чем монокристаллы, поэтому их стоимость ниже. Однако, качество мультикристалла по сравнению с монокристаллом также ниже из-за наличия множества границ зерен монокристаллов, из которых состоит мультикристалл.

Границы зерен создают дополнительные дефектные уровни в запрещенной зоне полупроводника, являясь локальными центрами с высокой скоростью рекомбинации, что приводит к уменьшению общего времени жизни неосновных носителей. Кроме того границы зерен уменьшают производительность препятствуя току носителей и создавая шунтирующие пути для тока, текущего через p-n переход.

Чтобы избежать слишком больших рекомбинационных потерь на границах зерен, размер зерен должен быть как минимум несколько миллиметров. Это условие также означает, что размеры одного зерна будут больше, чем толщина солнечного элемента, что уменьшит сопротивление току носителей и общую протяженность пограничных областей в солнечном элементе. Такой мультикристалличнеский кремний широко используется в коммерческих солнечных элементах.

Поликристаллический кремний. Поликремний представляет собой высокочистый кремний с содержанием примесей менее 0,0001 %, состоящий из большого числа небольших кристаллических зерен, ориентированных друг относительно друга хаотически.

По сути, технический кремний тоже является поликристаллическим, однако, во избежание путаницы, понятие «поликристаллический кремний» применяется только к особо чистому полупроводниковому кремнию.

Поликремний — наиболее чистая форма промышленно производимого кремния и основной материал для микроэлектроники и солнечной энергетики — полуфабрикат, получаемый очисткой технического кремния хлоридными методами и используемый для производства моно- и мультикристаллического кремния.

В настоящее время различают поликремний «электронного» (полупроводникового) качества (содержанием примесей менее 1·10 -10 %) и поликремний «солнечного» качества (содержанием примесей менее 1·10 -5 %).Большая часть поликристаллического кремния в мире производится в форме цилиндрических стержней серого цвета с шершавой дендритной поверхностью. В центре стержня находится «затравка» из моно- или поликремния круглого или квадратного сечения диаметром (стороной) 8 — 10 мм. От «затравки» перпендикулярно к образующей прорастают плотноупакованные кристаллиты в виде коротких игл, с сечением менее 1 мм.

Поликремний является сырьем для производства более совершенных видов кремния — мультикристаллического кремния (мультикремния) и монокристаллического кремния (монокремния), а также в некоторых сферах применения может использоваться в чистом виде.

Аморфный кремний. Бурый или коричневый порошок, сильно гигроскопичный, химически более активен, чем кристаллический. При обыкновенной температуре непосредственно реагирует с фтором, образуя фтористый кремний SiF4, при высокой температуре реагирует почти со всеми неметаллами и со многими металлами.

Координационное число кремния равно четырем, поэтому в кристалле каждый атом кремния связан с четырьмя соседними атомами. В кристаллическом кремнии эти тетраэдрические структуры продолжаются в широком диапазоне, образуя хорошо упорядоченную кристаллическую решетку. В аморфном кремнии это дальнего порядка нет, и структура порядка атомных позиций ограничивается короткой дистанцией. Скорее всего, атомы образуют непрерывные случайные сети. Кроме того, не все атомы в аморфном кремнии четыре раза скоординированы. В связи с неупорядоченным характером материала некоторые атомы имеют оборванные связи. Физически эти оборванные связи представляют собой дефекты в непрерывной случайной сети и значительно изменяют свойства кремния.

В полупроводниковых приборах аморфный кремний используется обычно в виде тонких пленок, осажденных на подложку. В солнечных элементах используются слои гидрогенизированного аморфного кремния, в котором значительная часть оборванных связей заполнена атомами водорода. Такой кремний показывает лучший коэффициент преобразования света в электроэнергию по сравнению с чистым аморфным кремнием.

Получение

Свободный кремний получается при прокаливании мелкого белого песка (диоксида кремния) с магнием:

При этом образуется аморфный кремний, имеющий вид бурого порошка.

В промышленности кремний технической чистоты получают, восстанавливая расплав SiO2 коксом при температуре около 1800 °C в руднотермических печах шахтного типа. Чистота полученного таким образом кремния может достигать 99,9 % (основные примеси — углерод, металлы).

Возможна дальнейшая очистка кремния от примесей.

Очистка в лабораторных условиях может быть проведена путём предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью соляной или уксусной кислот получают газообразный моносилан SiH4. Моносилан очищают ректификацией, сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000 °C.

Очистка кремния в промышленных масштабах осуществляется путём непосредственного хлорирования кремния. При этом образуются соединения состава SiCl4, SiHCl3 и SiH2Cl2. Их различными способами очищают от примесей (как правило, перегонкой и диспропорционированием) и на заключительном этапе восстанавливают чистым водородом при температурах от 900 до 1100 °C.

Разрабатываются более дешёвые, чистые и эффективные промышленные технологии очистки кремния. На 2010 г. к таковым можно отнести технологии очистки кремния с использованием фтора (вместо хлора); технологии, предусматривающие дистилляцию монооксида кремния; технологии, основанные на вытравливании примесей, концентрирующихся на межкристаллитных границах.

Содержание примесей в доочищенном кремнии может быть снижено до 10 −8 — 10 −6 % по массе. Более подробно вопросы получения сверхчистого кремния рассмотрены в статье Поликристаллический кремний.

Способ получения кремния в чистом виде разработан Николаем Николаевичем Бекетовым.

В России технический кремний производится «ОК Русал» на заводах в г. Каменск-Уральский (Свердловская область) и г. Шелехов (Иркутская область); доочищенный по хлоридной технологии кремний производит группа «Nitol Solar» на заводе в г. Усолье-Сибирское.

Нахождение в природе

Содержание кремния в земной коре составляет по разным данным 27,6 — 29,5 % по массе. Таким образом по распространённости в земной коре кремний занимает второе место после кислорода. Концентрация в морской воде 3 мг/л.

Чаще всего в природе кремний встречается в виде кремнезёма — соединений на основе диоксида кремния (IV) SiO2 (около 12 % массы земной коры). Основные минералы и горные породы, образуемые диоксидом кремния, — это песок (речной и кварцевый), кварц и кварциты, кремень,полевые шпаты. Вторую по распространённости в природе группу соединений кремния составляют силикаты и алюмосиликаты.

Отмечены единичные факты нахождения чистого кремния в самородном виде.

Использование

Технический кремний находит следующие применения:

· сырьё для металлургических производств: компонент сплава (бронзы, силумин);

· раскислитель (при выплавке чугуна и сталей);

· модификатор свойств металлов или легирующий элемент (например, добавка определённого количества кремния при производстве трансформаторных сталей уменьшает коэрцитивную силу готового продукта) и т. п.;

· сырьё для производства более чистого поликристаллического кремния и очищенного металлургического кремния (в литературе «umg-Si»);

· сырьё для производства кремнийорганических материалов, силанов;

· иногда кремний технической чистоты и его сплав с железом (ферросилиций) используется для производства водорода в полевых условиях;

· для производства солнечных батарей;

· антиблок (антиадгезивная добавка) в промышленности пластмасс.

Сверхчистый кремний преимущественно используется для производства одиночных электронных приборов (нелинейные пассивные элементы электрических схем) и однокристальных микросхем. Чистый кремний, отходы сверхчистого кремния, очищенный металлургический кремний в виде кристаллического кремния являются основным сырьевым материалом для солнечной энергетики.

Монокристаллический кремний — помимо электроники и солнечной энергетики, используется для изготовления зеркал газовых лазеров.

Соединения металлов с кремнием — силициды — являются широко употребляемыми в промышленности (например, электронной и атомной) материалами с широким спектром полезных химических, электрических и ядерных свойств (устойчивость к окислению, нейтронам и др.). Силициды ряда элементов являются важными термоэлектрическими материалами.

Соединения кремния служат основой для производства стекла и цемента. Производством стекла и цемента занимается силикатная промышленность. Она также выпускает силикатную керамику — кирпич, фарфор, фаянс и изделия из них.

Широко известен силикатный клей, применяемый в строительстве как сиккатив, а в пиротехнике и в быту для склеивания бумаги.

Получили широкое распространение силиконовые масла и силиконы — материалы на основе кремнийорганических соединений.

Заключение

Роль кремния в организме человека:

Кремний участвует в усвоении организмом более 70 минеральных солей и витаминов.

Кремний способствует усвоению кальция и росту костей, предупреждает остеопороз.

1. Кремний стимулирует иммунную систему.

2. Кремний необходим для здоровья волос.

3. Кремний улучшает состояние ногтей.

4. Кремний улучшает состояние кожи, укрепляет соединительные ткани.

5. Кремний укрепляет сосуды.

6. Кремний снижает риск сердечно — сосудистых заболеваний.

7. Кремний укрепляет суставы — хрящи и сухожилия.

Для некоторых организмов кремний является важным биогенным элементом. Он входит в состав опорных образований у растений и скелетных — у животных. В больших количествах кремний концентрируют морские организмы — диатомовые водоросли, радиолярии, губки. Большие количества кремния концентрируют хвощи и злаки, в первую очередь — подсемейства Бамбуков и Рисовидных, в том числе — рис посевной. Мышечная ткань человека содержит (1 — 2)·10 −2 % кремния, костная ткань — 17·10 −4 %, кровь — 3,9 мг/л. С пищей в организм человека ежедневно поступает до 1 г кремния.

Нормы предельно допустимых концентраций по кремнию привязаны к содержанию пыли диоксида кремния в воздухе. Это связано с особенностями химии кремния:

Чистый кремний, равно как карбид кремния, в контакте с водой или кислородом воздуха образует на поверхности непроницаемую пленку диоксида кремния (SiO2), которая пассивирует поверхность;

Многие кремнийорганические соединения в контакте с кислородом воздуха и водяными парами окисляются или гидролизуются с образованием в конечном итоге диоксида кремния;

Монооксид кремния (SiO) на воздухе способен (иногда со взрывом) доокисляться до высокодисперсного диоксида кремния.

Диоксид кремния в нормальных условиях всегда является твёрдым биоинертным, неразлагаемым веществом, склонным к образованию пыли, состоящей из частиц с острыми режущими кромками. Вредное действие диоксида кремния и большинства силицидов и силикатов основано на раздражающем и фиброгенном действии, на накоплении вещества в ткани лёгких, вызывающем тяжёлую болезнь — силикоз. Для защиты органов дыхания от пылевых частиц используются противопылевые респираторы. Тем не менее, даже при использовании средств индивидуальной защиты носоглотка, горло у людей, систематически работающих в условиях запыленности соединениями кремния и особенно монооксидом кремния, имеют признаки воспалительных процессов на слизистых оболочках.

Источник статьи: http://www.sites.google.com/a/soe.uspi.ru/tabl-mendeleva/home/kremnij


0 0 голоса
Article Rating
Подписаться
Уведомить о
guest

0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии