Если даны координаты точек начала и конца вектора $ A(a_x; a_y) $ и $ B(b_x; b_y) $, то найти длину можно по формулам:
Примеры решений
Разберем вектор. Первая координата $ a_x = 4 $, а вторая координата $ a_y=-3 $. Так как даны две координаты, то делаем вывод, что задача плоская. Необходимо применить первую формулу. Подставляем в неё значения из условия задачи:
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Ответ
Длина вектора $|\overline| = 5 $
Сразу замечаем, что дана пространственная задача. А именно $ a_x=4, a_y=2, a_z=4 $. Для нахождения длины вектора используем вторую формулу. Подставляем неизвестные в неё:
Задача дана плоская судя по наличию только двух координат у векторов. Но даны на этот раз начало и конец вектора. Поэтому сначала находим координаты вектора $ \overline $, а только потом его длину по формуле координат:
Теперь когда координаты вектора $ \overline $ стали известны можно использовать привычную формулу:
Ответ
$|\overline|=\sqrt <13>$
В статье мы ответили на вопрос:»Как найти длину вектора?» с помощью формул. А также рассмотрели практические примеры решения задач на плоскости и в пространстве. Следует заметить, что существуют аналогичные формулы для пространств больше, чем трёхмерные.
Чтобы найти длину вектора, заданного своими координатами, нужно извлечь корень квадратный из суммы квадратов его координат. Если вектор задан на плоскости и имеет координаты $\bar=\left(a_ ; a_\right)$, его длина вычисляется по формуле:
Примеры вычисления длины вектора
Задание. Найти длину вектора $\bar=(-3 ; 4)$
Решение. Для нахождения длины вектора, заданного на плоскости, воспользуемся формулой
Ответ. $|\bar|=5$
Задание. В пространстве заданы точки $A(3 ;-2 ;-1)$ и $ B(1 ; 2 ;-5)$. Найти длину вектора $\overline$
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool. Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Длина нулевого вектора $\overline<0>$ равна нулю. Длина единичного вектора $\overline$ равна единице.
Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.
Задание. Найти длину $\overline=(1 ; 0 ;-4)$
Решение. Используя формулу, получаем:
Вы поняли, как решать? Нет?
Разделы
Краткая теория
Онлайн калькуляторы
Другая информация
Рассчитайте цену решения ваших задач
Калькулятор стоимости
Решение контрольной 300-600 рублей —> от 300 рублей *
* Точная стоимость будет определена после загрузки задания для исполнителя
Копирование материалов с сайта возможно только с разрешения администрации портала и при наличие активной ссылки на источник.
«Сегодня от своего лица хочу поблагодарить этот сайт за помощь мне с учебой. Здесь я пользовалась не только материалами, но и нашла преподавателей которые решали мне задачи.
Если тебе нужно что-то сделать в универе, я сама рекомендую. А также пользуйся моей ссылкой и получай 300 руб. на счёт при регистрации.»
Вектор началом которого есть точка А, а концом — точка В, обозначается AB (рис.1). Также вектора обозначают одной маленькой буквой, например a .
Длина вектора
Для обозначения длины вектора используются две вертикальные линии слева и справа | AB |.
Нулевой вектор
Нулевой вектор обычно обозначается как 0 .
Длина нулевого вектора равна нулю.
Коллинеарные вектора
рис. 2
Сонаправленные вектора
Противоположно направленные вектора
Компланарные вектора
рис. 5
Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.
Равные вектора
То есть, два вектора равны, если они коллинеарные, сонаправленые и имеют равные длины:
a = b , если a ↑↑ b и | a | = | b |.
Единичный вектор
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool. Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.