Составить уравнение прямой, проходящей через две точки
Рассмотрим, как составить уравнение прямой, проходящей через две точки, на примерах.
Составить уравнение прямой, проходящей через точки A(-3; 9) и B(2;-1).
1 способ — составим уравнение прямой с угловым коэффициентом.
Уравнение прямой с угловым коэффициентом имеет вид y=kx+b. Подставив координаты точек A и B в уравнение прямой (x= -3 и y=9 — в первом случае, x=2 и y= -1 — во втором), получаем систему уравнений, из которой находим значения k и b:
Сложив почленно 1-е и 2-е уравнения, получим: -10=5k, откуда k= -2. Подставив во второе уравнение k= -2, найдём b: -1=2·(-2)+b, b=3.
Таким образом, y= -2x+3 — искомое уравнение.
2 способ — составим общее уравнение прямой.
Общее уравнение прямой имеет вид ax+by+c=0. Подставив координаты точек A и B в уравнение, получаем систему:
Поскольку количество неизвестных больше количества уравнений, система не разрешима. Но можно все переменные выразить через одну. Например, через b.
Умножив первое уравнение системы на -1 и сложив почленно со вторым:
получим: 5a-10b=0. Отсюда a=2b.
Подставим полученное выражение во второе уравнение: 2·2b -b+c=0; 3b+c=0; c= -3b.
Подставляем a=2b, c= -3b в уравнение ax+by+c=0:
2bx+by-3b=0. Осталось разделить обе части на b:
Общее уравнение прямой легко приводится к уравнению прямой с угловым коэффициентом:
3 способ — составим уравнение прямой, проходящей через 2 точки.
Уравнение прямой, проходящей через две точки, имеет вид:
Подставим в это уравнение координаты точек A(-3; 9) и B(2;-1)
В школьном курсе чаще всего используется уравнение прямой с угловым коэффициентом. Но самый простой способ — вывести и использовать формулу уравнения прямой, проходящей через две точки.
Если при подстановке координат заданных точек один из знаменателей уравнения
окажется равным нулю, то искомое уравнение получается приравниваем к нулю соответствующего числителя.
Составить уравнение прямой, проходящей через две точки C(5; -2) и D(7;-2).
Подставляем в уравнение прямой, проходящей через 2 точки, координаты точек C и D:
Составить уравнение прямой, проходящей через точки M (7; 3) и N (7; 11).
Источник статьи: http://www.treugolniki.ru/sostavit-uravnenie-pryamoj/
Урок 29. Нахождение уравнение прямой по двум точкам
Урок из серии «Геометрические алгоритмы»
Здравствуйте, дорогой читатель!
Сегодня мы начнем изучать алгоритмы, связанные с геометрией. Дело в том, что олимпиадных задач по информатике, связанных с вычислительной геометрией, достаточно много и решение таких задач часто вызывают затруднения.
За несколько уроков мы рассмотрим ряд элементарных подзадач, на которые опирается решение большинства задач вычислительной геометрии.
На этом уроке мы составим программу для нахождения уравнения прямой, проходящей через заданные две точки. Для решения геометрических задач нам понадобятся некоторые знания из вычислительной геометрии. Часть урока мы посвятим знакомству с ними.
Сведения из вычислительной геометрии
Вычислительная геометрия – это раздел информатики, изучающий алгоритмы решения геометрических задач.
Исходными данными для таких задач могут быть множество точек на плоскости, набор отрезков, многоугольник (заданный например, списком своих вершин в порядке движения по часовой стрелке) и т.п.
Результатом может быть либо ответ на какой то вопрос (типа принадлежит ли точка отрезку, пересекаются ли два отрезка, …), либо какой-то геометрический объект (например, наименьший выпуклый многоугольник, соединяющий заданные точки, площадь многоугольника, и т.п.).
Мы будем рассматривать задачи вычислительной геометрии только на плоскости и только в декартовой системе координат.
Чтобы применять методы вычислительной геометрии, необходимо геометрические образы перевести на язык чисел. Будем считать, что на плоскости задана декартова система координат, в которой направление поворота против часовой стрелки называется положительным.
Теперь геометрические объекты получают аналитическое выражение. Так, чтобы задать точку, достаточно указать её координаты: пару чисел (x; y). Отрезок можно задать, указав координаты его концов, прямую можно задать, указав координаты пары ее точек.
Но основным инструментом при решении задач у нас будут векторы. Напомню поэтому некоторые сведения о них.
Отрезок АВ, у которого точку А считают началом (точкой приложения), а точку В – концом, называют вектором АВ и обозначают либо , либо жирной строчной буквой, например а.
Для обозначения длины вектора (то есть длины соответствующего отрезка) будем пользоваться символом модуля (например, ).
Произвольный вектор будет иметь координаты, равные разности соответствующих координат его конца и начала:
,
здесь точки A и B имеют координаты соответственно.
Для вычислений мы будем использовать понятие ориентированного угла, то есть угла, учитывающего взаимное расположение векторов.
Ориентированный угол между векторами a и b положительный, если поворот от вектора a к вектору b совершается в положительном направлении (против часовой стрелки) и отрицательный – в другом случае. См рис.1а, рис.1б. Говорят также, что пара векторов a и b положительно (отрицательно) ориентирована.
Рис. 1а | Рис. 1б |
Таким образом, величина ориентированного угла зависит от порядка перечисления векторов и может принимать значения в интервале .
Многие задачи вычислительной геометрии используют понятие векторного (косого или псевдоскалярного) произведений векторов.
Векторным произведением векторов a и b будем называть произведение длин этих векторов на синус угла между ними:
.
Векторное произведение векторов в координатах:
Выражение справа — определитель второго порядка:
В отличии от определения, которое дается в аналитической геометрии, это скаляр.
Знак векторного произведения определяет положение векторов друг относительно друга:
Если величина , то пара векторов a и b положительно ориентирована.
Если величина , то пара векторов a и b отрицательно ориентирована.
Векторное произведение ненулевых векторов равно нулю тогда и только тогда, когда они коллинеарны ( ). Это значит, что они лежат на одной прямой или на параллельных прямых.
Рассмотрим несколько простейших задач, необходимых при решении более сложных.
Уравнение прямой
Определим уравнение прямой по координатам двух точек.
Уравнение прямой, проходящей через две различные точки, заданные своими координатами.
Пусть на прямой заданы две не совпадающие точки: с координатами (x1;y1) и
с координатами (x2; y2). Соответственно вектор с началом в точке
и концом в точке
имеет координаты (x2-x1, y2-y1). Если P(x, y) – произвольная точка на нашей прямой, то координаты вектора
равны (x-x1, y – y1).
С помощью векторного произведения условие коллинеарности векторов и
можно записать так:
, т.е. (x-x1)(y2-y1)-(y-y1)(x2-x1)=0
(y2-y1)x + (x1-x2)y + x1(y1-y2) + y1(x2-x1) = 0
Последнее уравнение перепишем следующим образом:
Итак, прямую можно задать уравнением вида (1).
Задача 1. Заданы координаты двух точек. Найти её представление в виде ax + by + c = 0.
На этом уроке мы познакомились с некоторыми сведениями из вычислительной геометрии. Решили задачу по нахождению уравнения линии по координатам двух точек.
На следующем уроке составим программу для нахождения точки пересечения двух линий, заданных своими уравнениями.
Источник статьи: http://gospodaretsva.com/urok-29-naxozhdenie-uravnenie-pryamoj-po-dvum-tochkam.html
Как составить уравнение прямой по двум точкам: двумерный и трехмерный случаи
Прямая в геометрии является одним из самых важных элементов, поскольку из нее собираются многие фигуры как на плоскости, так и в пространстве. Достаточно назвать треугольник, параллелограмм, призму, пирамиду — все они образованы пересекающимися прямыми. В данной статье дан ответ на вопрос, как по двум точкам составить уравнение прямой.
Уравнение прямой для двумерного и трехмерного случаев
Прежде чем переходить к обсуждению вопроса, как по двум точкам составить уравнение прямой, следует понять, о чем идет речь.
Под уравнением прямой понимают равенство, связанное с принятой системой координат, причем все значения переменных, удовлетворяющие ему, должны ложиться на одну прямую. В двумерном и трехмерном случаях это уравнение можно задать в следующем виде:
Здесь Q — координаты произвольной точки прямой, P — координаты конкретной точки, принадлежащей прямой, u¯ — направляющий вектор, α — любое действительное число. Направляющий вектор u¯ является параллельным прямой. Это выражение называется параметрически-векторным уравнением.
В двумерном случае каждая точка на плоскости однозначно задается двумя координатами x и y, поэтому можно записать уравнение прямой в виде:
Где (x0; y0) — координаты известной точки прямой, (a; b) — координаты направляющего вектора. В параметрическом виде это уравнение можно переписать как систему из двух уравнений:
Выражая параметр альфа и приравнивая полученные равенства, приходим к виду:
Полученное выражение знакомо каждому школьнику. Оно называется общим уравнением прямой на плоскости.
В пространстве каждая точка задана не двумя, а тремя координатами, поэтому ее уравнение параметрически-векторное принимает форму:
Параметрически-векторное уравнение удобно использовать, когда нужно составить уравнение прямой, проходящей через две точки.
Прямая и две точки
Теперь рассмотрим непосредственно вопрос статьи. Как по двум точкам составить прямой уравнение? Сначала получим уравнение на плоскости, а затем обобщим его для трехмерного случая.
Предположим, что имеется две точки на плоскости P(x1; y1) и Q(x2; y2). Если взять разность координат точек, то мы получим вектор, который направлен от одной из них к другой. Этот вектор равен:
В данном случае PQ¯ направлен от P (начало направленного отрезка) к Q (его конец). Поскольку обе точки принадлежат прямой, то и вектор PQ¯ принадлежит ей. Это означает, что его можно считать направляющим. Уравнение прямой принимает вид:
Здесь мы взяли точку P. Если ее заменить точкой Q, то уравнение не изменится.
Как по двум точкам составить уравнение прямой в пространстве? Обобщая полученную формулу для плоскости, получаем:
Другая буква для параметра взята чтобы показать независимость этого и предыдущего уравнений.
Пример решения задачи
Разобравшись, как составить прямой уравнение по двум точкам, приведем пример использования полученных знаний для двумерного случая.
Пусть имеются точки на плоскости (3; -4) и (0; 7). Необходимо составить через две точки прямой уравнение.
Вычисляем координаты направляющего вектора:
Параметрически-векторное уравнение имеет вид:
Раскроем его и приведем к общему виду:
Мы получили уравнение в привычном (общем) виде. Можно проверить его справедливость, подставив координаты обеих точек из условия задачи.
Источник статьи: http://www.syl.ru/article/439519/kak-sostavit-uravnenie-pryamoy-po-dvum-tochkam-dvumernyiy-i-trehmernyiy-sluchai