Параметрическое уравнение прямой на плоскости
В данной статье мы рассмотрим параметрическое уравнение прямой на плоскости. Приведем примеры построения параметрического уравнения прямой, если известны две точки этой прямой или если известна одна точка и направляющий вектор этой прямой. Представим методы преобразования уравнения в параметрическом виде в канонический и общий виды.
Параметрическое уравнение прямой L на плоскости представляется следующей формулой:
Отметим что при записи уравнения прямой в параметрическом виде, направляющий вектор прямой не должен быть нулевым вектором, т.е хотя бы один координат направляющего вектора q должен быть отличным от нуля.
Для построения прямой на плоскости в декартовой прямоугольной системе координат, заданной параметрическим уравнением (1), достаточно задать параметру t две разные значения, вычислить x и y и провести через эти точки прямую линию. При t=0 имеем точку M1(x1, y1) при t=1, получим точку M2(x1+m, y1+p).
Для составления параметрического уравнения прямой на плоскости L достаточно иметь точку на прямой L и направляющий вектор прямой или две точки, принадлежащие прямой L. В первом случае, для построения параметрического уравнения прямой нужно координаты точки и направляющего вектора вставить в уравнение (1). Во втором случае сначала нужно найти направляющий вектор прямой q=<m, p>, вычисляя разности соответствующих координатов точек M1 и M2: m=x2−x1, p=y2−y1(Рис.1). Далее, аналогично первому случаю, подставить координаты одной из точек (не имеет значение какой именно) и направляющего вектора q прямой в (1).
Можно также вывести формулу параметрического уравнения прямой, проходящей через две точки. Для этого подставим значения m=x2−x1, p=y2−y1 в (1), получим параметрическое уравнение прямой на плоскости, проходящей через точки M1(x1, y1) и M2(x2, y2):
Пример 1. Прямая проходит через точку M=(3,−1) и имеет направляющий вектор q=<−3, 5>. Построить параметрическое уравнение прямой.
Решение. Для построения параметрического уравнения прямой, подставим координаты точки и направляющего вектора в уравнение (1):
Пример 2. Прямая проходит через точки M1=(−5, 2) и M2=(−2, 3). Построить параметрическое уравнение прямой.
Решение. Воспользуемся формулой (2). Подставим координаты точек M1 и M2 в уравнение (2):
Упростим полученное уравнение:
Приведение параметрического уравнения на плоскости к каноническому виду
Выразим параметр t в (1) через переменные x и y:
Из выражений (3), можем записать каноническое уравнение прямой на плоскости:
Обратное преобразование смотрите здесь.
Пример 3. Прямая на плоскости представлена следующим параметрческим уравнением:
Привести данное уравнение прямой к каноническому виду.
Решение: Выразим параметр t через переменные x и y:
Из выражений (5), можем записать:
Приведение параметрического уравнения на плоскости к общему виду
Для приведения параметрического уравнения прямой на плоскости к общему виду, в формулах (1) выразим из второго уравнения параметр t через переменную y и подставим в первое уравнение:
Умножим обе части уравнения (6) на p и группируем элементы уравнения:
Сделаем обозначения: A=p, B=−m, C=−px1+my1. Тогда получим общее уравнение прямой:
Обратное преобразование смотрите здесь.
Пример 4. Прямая на плоскости представлена следующим параметрческим уравнением:
Привести данное уравнение прямой к общему виду.
Решение: В уравнении (9) имеем: x1=−5, y1=0, m=4, p=−2. Подставим эти значения в формулу (7):
Упростив выражение (10) получим общее уравнение прямой (9):
Источник статьи: http://matworld.ru/analytic-geometry/parametricheskoe-uravnenie-prjamoj.php
Параметрические уравнения прямой на плоскости
Параметрические уравнения прямой элементарно получаются из канонического уравнения этой прямой, имеющей вид . Примем за параметр
величину, на которую можно умножить левую и правую части канонического уравнения.
Так как один из знаменателей обязательно отличен от нуля, а соответствующий числитель может принимать какие угодно значения, то областью изменения параметра является вся ось вещественных чисел:
.
Мы получим или окончательно
Уравнения (1) и есть искомые параметрические уравнения прямой. Эти уравнения допускают механическую интерпретацию. Если считать, что параметр — это время, отсчитываемое от некоторого начального момента, то параметрические уравнения определяют закон движения материальной точки по прямой линии с постоянной скоростью
(такое движение происходит по инерции).
Пример 1. Составить на плоскости параметрические уравнения прямой, проходящей через точку и имеющей направляющий вектор
.
Решение. Подставляем данные точки и направляющего вектора в (1) и получаем:
Часто в задачах требуется преобразовать параметрические уравнения прямой в другие виды уравнений, а из уравнений других видов получить параметрические уравнения прямой. Разберём несколько таких примеров. Для преобразования параметрических уравнений прямой в общее уравнение прямой сначала следует привести их к каноническому виду, а затем из канонического уравнения получить общее уравнение прямой
Пример 2. Записать уравнение прямой
Решение. Сначала приводим параметрические уравнения прямой к каноническому уравнению:
Дальнейшими преобразованиями приводим уравнение к общему виду:
Несколько более сложно преобразование общего уравнения в параметрические уравнения прямой, но и для этого действия можно составить чёткий алгоритм. Сначала можно преобразовать общее уравнение в уравнение с угловым коэффициентом и найти из него координаты какой-либо точки, принадлежащей прямой, придавая одной из координат произвольное значение. Когда известны координаты точки и направляющего вектора (из общего уравнения), можно записать параметрические уравнения прямой.
Пример 3. Записать уравнение прямой в виде параметрических уравнений.
Решение. Приводим общее уравнение прямой в уравнение с угловым коэффициентом:
Находим координаты некоторой точки, принадлежащей прямой. Придадим одной из координат точки произвольное значение
Из уравнения прямой с угловым коэффициентом получаем другую координату точки:
Таким образом, нам известны точка и направляющий вектор
. Подставляем их данные в (1) и получаем искомые параметрические уравнения прямой:
Пример 4. Найти угловой коэффициент прямой, заданной параметрическими уравнениями
Решение. Параметрические уравнения прямой сначала следует преобразовать в каноническое, затем в общее и, наконец, в уравнение с угловым коэффициентом.
Таким образом, угловой коэффициент заданной прямой:
Пример 5. Составить параметрические уравнения прямой, проходящей через точку и перпендикулярной прямой
Решение. Cначала найдём из данных параметрических уравнений координаты вектора нормали искомой прямой. Если направляющий вектор , то
. Из данного уравнения получаем
Составим общее уравнение искомой прямой по формуле :
Преобразуем полученное уравнение в уравнение с угловым коэффициентом:
Находим какую-либо точку, принадлежащую этой прямой. Для этого одной из координат этой точки придадим произвольное значение . Тогда
Источник статьи: http://function-x.ru/line5.html
Уравнение прямой
Уравнение прямой на плоскости
Любую прямую на плоскости можно задать уравнением прямой первой степени вида
где A и B не могут быть одновременно равны нулю.
Уравнение прямой с угловым коэффициентом
Общее уравнение прямой при B≠0 можно привести к виду
где k — угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ.
Уравнение прямой в отрезках на осях
Если прямая пересекает оси OX и OY в точках с координатами ( a , 0) и (0, b ), то она может быть найдена используя формулу уравнения прямой в отрезках
Уравнение прямой, проходящей через две различные точки на плоскости
Если прямая проходит через две точки M( x 1, y 1) и N( x 2, y 2), такие что x 1 ≠ x 2 и y 1 ≠ y 2, то уравнение прямой можно найти, используя следующую формулу
x — x 1 | = | y — y 1 |
x 2 — x 1 | y 2 — y 1 |
Параметрическое уравнение прямой на плоскости
Параметрические уравнения прямой могут быть записаны следующим образом
где N( x 0, y 0) — координаты точки лежащей на прямой, a = < l , m >— координаты направляющего вектора прямой.
Каноническое уравнение прямой на плоскости
Если известны координаты точки N( x 0, y 0) лежащей на прямой и направляющего вектора a =
Решение. Воспользуемся формулой для уравнения прямой проходящей через две точки
Упростив это уравнение получим каноническое уравнение прямой
Выразим y через x и получим уравнение прямой с угловым коэффициентом
Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .
Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой
Решение. Так как M y — N y = 0, то невозможно записать уравнение прямой проходящей через две точки.
Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .
Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой
Уравнение прямой в пространстве
Уравнение прямой, проходящей через две различные точки в пространстве
Если прямая проходит через две точки M( x 1, y 1, z 1) и N( x 2, y 2, z 2), такие что x 1 ≠ x 2, y 1 ≠ y 2 и z 1 ≠ z 2, то уравнение прямой можно найти используя следующую формулу
x — x 1 | = | y — y 1 | = | z — z 1 |
x 2 — x 1 | y 2 — y 1 | z 2 — z 1 |
Параметрическое уравнение прямой в пространстве
Параметрические уравнения прямой могут быть записаны следующим образом
x = l t + x 0 | |
y = m t + y 0 | |
z = n t + z 0 |
где ( x 0, y 0, z 0) — координаты точки лежащей на прямой,
Каноническое уравнение прямой в пространстве
Если известны координаты точки M( x 0, y 0, z 0) лежащей на прямой и направляющего вектора n =
x — x 0 | = | y — y 0 | = | z — z 0 |
l | m | n |
Прямая как линия пересечения двух плоскостей
Если прямая является пересечением двух плоскостей, то ее уравнение можно задать следующей системой уравнений
Источник статьи: http://ru.onlinemschool.com/math/library/analytic_geometry/line/