Меню Рубрики

Как написать обозначение фигур

Обозначения и символика

Для обозначения геометрических фигур и их проекций, для отображения отношения между ними, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем в курсе используется геометрический язык, составленный из обозначений и символов, принятых в курсе математики (в частности, в новом курсе геометрии в средней школе).

Все многообразие обозначений и символов, а также связи между ними могут быть подразделены на две группы:

группа I — обозначения геометрических фигур и отношений между ними;

группа II обозначения логических операций, составляющие синтаксическую основу геометрического языка.

Ниже приводится полный список математических символов, используемых в данном курсе. Особое внимание уделяется символам, которые применяются для обозначения проекций геометрических фигур.

СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ОТНОШЕНИЯ МЕЖДУ НИМИ

А. Обозначение геометрических фигур

1. Геометрическая фигура обозначается — Ф.

2. Точки обозначаются прописными буквами латинского алфавита или арабскими цифрами:

3. Линии, произвольно расположенные по отношению к плоскостям проекций, обозначаются строчными буквами латинского алфавита:

Линии уровня обозначаются: h — горизонталь; f— фронталь.

Для прямых используются также следующие обозначения:

(АВ) — прямая, проходящая через точки А а В;

[АВ) — луч с началом в точке А;

[АВ] — отрезок прямой, ограниченный точками А и В.

4. Поверхности обозначаются строчными буквами греческого алфавита:

Чтобы подчеркнуть способ задания поверхности, следует указывать геометрические элементы, которыми она определяется, например:

α(а || b) — плоскость α определяется параллельными прямыми а и b;

β(d1 d2gα) — поверхность β определяется направляющими d1 и d2 , образующей g и плоскостью параллелизма α.

∠ABC — угол с вершиной в точке В, а также ∠α°, ∠β°, . , ∠φ°, .

6. Угловая: величина (градусная мера) обозначается знаком , который ставится над углом:

— величина угла АВС;

— величина угла φ.

Прямой угол отмечается квадратом с точкой внутри

7. Расстояния между геометрическими фигурами обозначаются двумя вертикальными отрезками — ||.

|АВ| — расстояние между точками А и В (длина отрезка АВ);

|Аа| — расстояние от точки А до линии a;

|Аα| — расстояшие от точки А до поверхности α;

|аb| — расстояние между линиями а и b;

|αβ| расстояние между поверхностями α и β.

8. Для плоскостей проекций приняты обозначения: π1 и π2, где π1 — горизонтальная плоскость проекций;

π2 —фрюнтальная плоскость проекций.

При замене плоскостей проекций или введении новых плоскостей последние обозначают π3, π4 и т. д.

9. Оси проекций обозначаются: х, у, z, где х — ось абсцисс; у — ось ординат; z — ось аппликат.

Постояшную прямую эпюра Монжа обозначают k.

10. Проекции точек, линий, поверхностей, любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса, соответствующего плоскости проекции, на которой они получены:

А’, В’, С’, D’, . , L’, М’, N’, горизонтальные проекции точек; А», В», С», D», . , L», М», N», . фронтальные проекции точек; a’ , b’ , c’ , d’ , . , l’, m’ , n’ , — горизонтальные проекции линий; а» ,b» , с» , d» , . , l» , m» , n» , . фронтальные проекции линий; α’, β’, γ’, δ’. ζ’,η’,ν’. горизонтальные проекции поверхностей; α», β», γ», δ». ζ»,η»,ν». фронтальные проекции поверхностей.

11. Следы плоскостей (поверхностей) обозначаются теми же буквами, что и горизонталь или фронталь, с добавлением подстрочного индекса , подчеркивающего, что эти линии лежат в плоскости проекции и принадлежат плоскости (поверхности) α.

Так: h — горизонтальный след плоскости (поверхности) α;

f — фронтальный след плоскости (поверхности) α.

12. Следы прямых (линий) обозначаются заглавными буквами, с которых начинаются слова, определяющие название (в латинской транскрипции) плоскости проекции, которую пересекает линия, с подстрочным индексом, указывающим принадлежность к линии.

Например: Ha — горизонтальный след прямой (линии) а;

Fa — фронтальный след прямой (линии ) a.

13. Последовательность точек, линий (любой фигуры) отмечается подстрочными индексами 1,2,3. n:

Вспомогательная проекция точки, полученная в результате преобразования для получения действительной величины геометрической фигуры, обозначается той же буквой с подстрочным индексом 0:

14. Аксонометрические проекции точек, линий, поверхностей обозначаются теми же буквами, что и натура с добавлением верхнего индекса 0 :

15. Вторичные проекции обозначаются путем добавления верхнего индекса 1 :

А 1 0 , В 1 0 , С 1 0 , D 1 0 , .

1 1 0 , 2 1 0 , 3 1 0 , 4 1 0 , .

a 1 0 , b 1 0 , c 1 0 , d 1 0 , .

α 1 0 , β 1 0 , γ 1 0 , δ 1 0 , .

Для облегчения чтения чертежей в учебнике при оформлении иллюстративного материала использованы несколько цветов, каждый из которых имеет определенное смысловое значение: линиями (точками) черного цвета обозначены исходные данные; зеленый цвет использован для линий вспомогательных графических построений; красными линиями (точками) показаны результаты построений или те геометрические элементы, на которые следует обратить особое внимание.

Источник статьи: http://nachert.ru/course/?lesson=1

Математика. 3 класс

Конспект урока

Урок №4. Обозначение геометрических фигур буквами

Перечень вопросов, рассматриваемых в теме:

— Как обозначают геометрические фигуры?

— Как правильно прочитать обозначение угла?

Для обозначения геометрических фигур пользуются буквами латинского алфавита. Используют для обозначения заглавные буквы. Отрезок обозначают буквами две точки. Чтобы назвать многоугольник, обозначают буквами его вершины. Угол обозначают тремя буквами.

Основная и дополнительная литература по теме урока:

1. Моро М. И., Бантова М. А. и др. Математика 3 класс. Учебник для общеобразовательных организаций М.; Просвещение, 2017. – с. 10.

2. М. И. Моро, С. И. Волкова. Для тех, кто любит математику 3 класс. Учебное пособие для общеобразовательных организаций. М.; Просвещение,2018. – с. 12.

Теоретический материал для самостоятельного изучения.

На этой весёлой картинке видим разные геометрические фигуры, которые ты хорошо знаешь. Назовём их:

Треугольник, круг, квадрат, овал, ромб, пятиугольник, шестиугольник, трапеция, прямоугольник.

На этом рисунке видим несколько прямоугольников. Они все одинаковые.

Попробуем назвать каждый. Не удается, прямоугольники все одинаковые и по цвету, и по размеру. Как быть?

А на этом рисунке много точек. Точка тоже геометрическая фигура. Как назвать каждую из них.

Много их, посмотри: раз, два, три.

Как у человека есть имя, так и у каждой фигуры должно быть своё имя.

Математики всего мира договорились обозначать геометрические фигуры заглавными буквами латинского алфавита. Точки на чертеже обозначают заглавными латинскими буквами: A, B, C, D, E, F и другими.

Чтобы назвать отрезок, обозначают буквами две точки – его концы. Например, отрезок AB, отрезок CD. В многоугольнике обозначают буквами его вершины и называют, например, так: квадрат ABCD, треугольник ABC

Угол обозначают тремя буквами. В середине названия всегда указывают букву, которой обозначена вершина угла.

Например, в треугольнике АВС угол с вершиной А – это угол ВАС или угол САВ

1. Подчеркните правильное обозначение угла.

2. Выберите фигуры, которые обозначены верно.

Источник статьи: http://resh.edu.ru/subject/lesson/5126/conspect/

Символьные обозначения

Для обозначения геометрических фигур и их проекций, для отображения отношения между геометрическими фигурами, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем используются символьные обозначения.

Символьные обозначения, все их многообразие, может быть подразделено на две группы: — Первая группа — обозначения геометрических фигур и отношения между ними; — Вторая группа — обозначения логических операций, составляющая синтаксическую основу геометрического языка.

Символьные обозначения — Первая группа

Символы, обозначающие геометрические фигуры и отношения между ними

Обозначения геометрических фигур: Φ — геометрическая фигура; A, B, C, D, . L, M, N, . — точки расположенные в пространстве; 1, 2, 3, 4, . 12, 13, 14, . — точки расположенные в пространстве; a, b, c, d, . l, m, n, . — линии, произвольно расположенные по отношению к плоскостям проекций; h, υ(f), ω — линии уровня (горизонталь, фронталь, профильная прямая соответственно); (AB) — прямая проходящая через точки A и B; [AB) — луч с началом в точке A; [AB] — отрезок прямой, ограниченный точками A и B; α, β, γ, δ, . ζ, η, θ — поверхность; ∠ABC — угол с вершиной в точке B; ∠α, ∠β, ∠γ — угол α, угол β, угол γ соответственно; |AB| — расстояние от точки A до точки B (длина отрезка AB); |Aa| — расстояние от точки A до линии a; |Aα| — расстояние от точки A до поверхности α; |ab| — расстояние между прямыми a и b; |αβ| — расстояние между поверхностями α и β; H, V, W — координатные плоскости проекций (именуемые как горизонтальная, фронтальная, профильная соответственно); П1, П2, П3 — координатные плоскости проекций (именуемые как горизонтальная, фронтальная, профильная соответственно); x, y, z — координатные оси проекций (ось абсцисс, ось ординат, ось аппликат); ko — постоянная прямая эпюра Монжа; O — точка пересечения осей проекций; `, «, `» — верхние индексы для проекций точек, прямых, углов, фигур, поверхностей на плоскости проекций (именуемые как горизонтальную, фронтальную, профильную соответственно); 1, 2, 3 — верхние индексы для проекций точек, прямых, углов, фигур, поверхностей на плоскости проекций (именуемые как горизонтальную, фронтальную, профильную соответственно); αH, αV, αW — след поверхности оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно; αH, αV, αW — след поверхности α оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно; aH, aV, aW — след прямой a оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно;

Проекции точек, линий, поверхностей любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса A`, A», A`» или 1`, 1″, 1`», соответствующего плоскости проекции, на которой они получены: A`, B`, C`, D`, . L`, M`, N`, . — горизонтальные проекции точек; A», B», C», D», . L», M», N», . — фронтальные проекции точек; A`», B`», C`», D`», . L`», M`», N`», . — профильные проекции точек; a`, b`, c`, d`, . l`, m`, n`, . — горизонтальные проекции линий; a», b», c», d», . l», m», n», . — фронтальные проекции линий; a`», b`», c`», d`», . l`», m`», n`», . — профильные проекции линий; α`, β`, γ`, δ`, . ζ`, η`, θ`, . — горизонтальные проекции поверхностей; α», β», γ», δ», . ζ», η», θ», . — фронтальные проекции поверхностей; α`», β`», γ`», δ`», . ζ`», η`», θ`», . — профильные проекции поверхностей;

Символы взаиморасположения геометрических объектов

Обозначение Смысловое значение Пример символической записи
(. ) способ задания геометрического объекта в пространстве и на комплексном чертеже А(А`, А») – точка А задана на комплексном чертеже горизонтальной и фронтальной проекциями; α(А, b) – плоскость α задана прямой b и точкой А.
∈ ⊂ , ⊃ принадлежность А∈l – точка А принадлежит прямой l; l⊂α – прямая l лежит в плоскости α
совпадение А`≡ В` – горизонтальные проекции точек А и В совпадают.
‖ , // параллельность a // b – прямые a и b параллельны.
перпендикулярность c⊥d – прямые c и d перпендикулярны.
скрещивание m ∸ n – прямые m и n скрещивающиеся.
пересечение k ∩ l – прямые k и l пересекаются.
подобие ΔАВС

ΔDEF – треугольники ABC и DEF подобны.

конгруэнтность ΔАВС ≅ /АВ/ = /CD/ – отрезки АВ и CD равны.
= равенство, результат действия /АВ/ = /CD/ – длины отрезков AB и CD равны; k ∩ l = M — прямые k и l пересекаются в точке M.
/ отрицание А ∉ l – точка А не принадлежит прямой l.
→ ← отображение, преобразование V/H → V1/H– система ортогональных плоскостей V/H преобразуется в систему плоскостей V1/H

Символьные обозначения — Вторая группа

Источник статьи: http://ngeo.fxyz.ru/%D1%81%D0%B8%D0%BC%D0%B2%D0%BE%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5_%D0%BE%D0%B1%D0%BE%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D1%8F/

Математика. 3 класс

Многоугольники

Разделите фигуры на три группы путём перетаскивания.

Прямоугольник

Квадрат

Треугольник

Длина и периметр

К каждой позиции первого столбца подберите соответствующую позицию второго.

Длина прямоугольника равна 9 см, а ширина 5 см . Чему равен периметр прямоугольника?

Ломаная состоит из трёх звеньев. Длина каждого 6 см. Чему равна длина всей ломаной?

Длина отрезка АВ равна 9 см, а отрезок СD на 3 см длиннее. Чему равна длина отрезка СD?

Обозначение угла

Подчеркните правильное обозначение угла.

Названия геометрических фигур

Укажите геометрические фигуры, из которых состоит аппликация.

Признаки прямоугольников и треугольников

Раскрасьте (залейте) все прямоугольники зелёным цветом, треугольники – малиновым.

Виды геометрических фигур

Выберите высказывания, верные для этого рисунка.

Каждый многоугольник красного цвета

Все фигуры зелёного цвета не многоугольники

Фигура синего цвета – прямоугольник

Обозначение геометрических фигур буквами

Выберите фигуры, которые обозначены верно.

Взаимное расположение фигур

На доске цветными мелками написаны слова: квадрат, треугольник, прямоугольник.

Малиновое слово левее голубого, голубое – выше зелёного. Выделите каждое слово нужным цветом.

Источник статьи: http://resh.edu.ru/subject/lesson/5126/train/


0 0 голоса
Article Rating
Подписаться
Уведомить о
guest

0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии