Меню Рубрики

Как написать натуральные числа

Натуральные числа. Ряд натуральных чисел.

История натуральных чисел началась ещё в первобытные времена. Издревле люди считали предметы. Например, в торговле нужен был счет товара или в строительстве счет материала. Да даже в быту тоже приходилось считать вещи, продукты, скот. Сначала числа использовались только для подсчета в жизни, на практике, но в дальнейшем при развитии математики стали частью науки.

Натуральные числа – это числа которые мы используем при счете предметов.

Например: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ….

Нуль не относится к натуральным числам.

Все натуральные числа или назовем множество натуральных чисел обозначается символом N.

Таблица натуральных чисел.

Натуральный ряд.

Натуральные числа, записанные подряд в порядке возрастания, образуют натуральный ряд или ряд натуральных чисел.

Свойства натурального ряда:

  • Наименьшее натуральное число – единица.
  • У натурального ряда следующее число больше предыдущего на единицу. (1, 2, 3, …) Три точки или троеточие ставятся в том случае, если закончить последовательность чисел невозможно.
  • Натуральный ряд не имеет наибольшего числа, он бесконечен.

Пример №1:
Напишите первых 5 натуральных числа.
Решение:
Натуральные числа начинаются с единицы.
1, 2, 3, 4, 5

Пример №2:
Нуль является натуральным числом?
Ответ: нет.

Пример №3:
Какое первое число в натуральном ряду?
Ответ: натуральный ряд начинается с единицы.

Пример №4:
Какое последнее число в натуральном ряде? Назовите самое большое натуральное число?
Ответ: Натуральный ряд начинается с единицы. Каждое следующее число больше предыдущего на единицу, поэтому последнего числа не существует. Самого большого числа нет.

Пример №5:
У единицы в натуральном ряду есть предыдущее число?
Ответ: нет, потому что единица является первым числом в натуральном ряду.

Пример №6:
Назовите следующее число в натуральном ряду за числами: а)5, б)67, в)9998.
Ответ: а)6, б)68, в)9999.

Пример №7:
Сколько чисел находится в натуральном ряду между числами: а)1 и 5, б)14 и 19.
Решение:
а) 1, 2, 3, 4, 5 – три числа находятся между числами 1 и 5.
б) 14, 15, 16, 17, 18, 19 – четыре числа находятся между числами 14 и 19.

Пример №8:
Назовите предыдущее число за числом 11.
Ответ: 10.

Пример №9:
Какие числа применяются при счете предметов?
Ответ: натуральные числа.

Источник статьи: http://tutomath.ru/5-klass/naturalnye-chisla.html

Что такое Натуральное число

Определение натурального числа

Натуральные числа — это те числа, которые появились натуральным способом, когда считали сколько у человека есть предметов. Например: 1, 2, 3, 4, 5 и т. д.

Наибольшее натуральное число: не существует. Наименьшее натуральное число: 1.

Например, люди считали, сколько у них было фруктов: 1 яблоко, 3 апельсина, 2 дыни.

Нуль (0) не является натуральным числом, хотя некоторые области математики всё-таки считают 0 натуральным числом.

Отрицательные числа (–1, –3, –5. ) не являются натуральными числами («–3» яблок сложно посчитать физически).

Дроби (например, ⅓ или ⅖) тоже не являются натуральными числами.

Такие понятия, как отрицательные («–3»), дроби («⅓») и нуль («0») появились много позже.

Множество натуральных чисел

Множество натуральных чисел бесконечно и обозначается буквой N, т. е.:

Натуральные числа:

Натуральные числа с нулём:

Ряд натуральных чисел

Если записать все натуральные числа в порядке возрастания (каждое натуральное число отличается от предыдущего на 1), это будет ряд натуральных чисел. Но если какие-то числа будут отсутствовать, это уже не будет считаться рядом натуральных чисел. Например:

  • это ряд натуральных чисел: 1, 2, 3, 4, 5, 6, 7, … ;
  • это не является рядом натуральных чисел: 1, 2, 3, 5, 6, 7, … .

Наибольшего натурального числа не существует — натуральный ряд бесконечен.

Ненатуральные числа

Ненатуральные числа — это отрицательные и нецелые числа (обычно 0 тоже считается ненатуральным, но не всегда).

Отрицательные числа — это все те, которые ниже нуля, например: –1, –2, –3, –4, –5 и др.;

  • обычные дроби, например: ½, –¾;
  • десятичные дроби, например: 0.07;
  • иррациональные числа, например: π (≈3.14), e (≈2.718), √2 (≈1.4142).

Свойства натуральных чисел

Натуральные числа обладают следующими свойствами:

  • множество натуральных чисел (обычно) начинается с 1, в нём находятся все натуральные числа и оно бесконечно;
  • за каждым натуральным числом всегда следует одно, и только одно натуральное число, которое больше предыдущего на 1;
  • результатом деления натурального числа на 1, является само натуральное число: a / 1 = a ; например: 4 / 1 = 4;
  • результатом деления натурального числа на него самого будет 1: a / a = 1 ; например: 5 / 5 = 1;
  • переместительный закон сложения: a + b = b + a ; например: 1 + 2 = 2 + 1;
  • сочетательный закон сложения: (a + b) + c = a + (b + c) ; например: (1 + 2) + 3 = 1 + (2 + 3);
  • переместительный закон умножения: ab = ba ; например: 2×3 = 3×2,
  • сочетательный закон умножения: (a × b) × c = a × (b × c) ; например: (1 × 2) × 3 = 1 × (2 × 3);
  • распределительный закон умножения относительно сложения: a × (b + c) = ab + ac ; например: 2 × (3 + 4) = 2×3 + 2×4;
  • распределительный закон умножения относительно вычитания: a × (b – c) = ab – ac ; например: 2 × (4 – 3) = 2×4 – 2×3;
  • распределительный закон деления относительно сложения: (a + b) : c = a:c + b:c; например: (4 + 6) : 2 = 4:2 + 6:2
  • распределительный закон деления относительно вычитания: (a – b) : c = a:c – b:c; например: (6 – 4) : 2 = 6:2 – 4:2;

Источник статьи: http://www.uznaychtotakoe.ru/naturalnoe-chislo/

Натуральные числа

Натуральные числа — одно из старейших математических понятий.

В далёком прошлом люди не знали чисел и, когда им требовалось пересчитать предметы (животных, рыбу и т.д.), они делали это не так, как мы сейчас.

Количество предметов сравнивали с частями тела, например, с пальцами на руке и говорили: «У меня столько же орехов, сколько пальцев на руке».

Со временем люди поняли, что пять орехов, пять коз и пять зайцев обладают общим свойством — их количество равно пяти.

Натуральные числа — это числа, начиная с 1 , получаемые при счете предметов.

Наименьшее натуральное число — 1 .

Наибольшего натурального числа не существует.

При счёте число ноль не используется. Поэтому ноль не считается натуральным числом.

Записывать числа люди научились гораздо позже, чем считать. Раньше всего они стали изображать единицу одной палочкой, потом двумя палочками — число 2 , тремя — число 3 .

Затем появились и особые знаки для обозначения чисел — предшественники современных цифр. Цифры, которыми мы пользуемся для записи чисел, родились в Индии примерно 1 500 лет назад. В Европу их привезли арабы, поэтому их называют арабскими цифрами.

Всего цифр десять: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 . С помощью этих цифр можно записать любое натуральное число.

Натуральный ряд — это последовательность всех натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 …

В натуральном ряду каждое число больше предыдущего на 1 .

Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует.

Систему счёта (счисления), который мы пользуемся, называют десятичной позиционной .

Десятичной потому, что 10 единиц каждого разряда образуют 1 единицу старшего разряда. Позиционной потому, что значение цифры зависит от её места в записи числа, то есть от разряда, в котором она записана.

Разряды и классы (включая класс миллионов) подробно разобраны на нашем сайте в материалах для начальной школы.

Класс миллиардов

Если взять десять сотен миллионов, то получим новую разрядную единицу — один миллиард или в записи цифрами.

1 000 миллионов = 1 000 000 000 = 1 млрд

Десять таких единиц — десять миллиардов, десять десятков миллиардов образуют следующую единицу — сто миллиардов.

Миллиарды, десятки миллиардов и сотни миллиардов образуют четвёртый класс — класс миллиардов.

Разряды и классы натурального числа

Рассмотрим натуральное число 783 502 197 048

Название
класса
Миллиарды Миллионы Тысячи Единицы
Название разряда Сотни миллиардов Десятки миллиардов Миллиарды Сотни миллионов Десятки миллионов Миллионы Сотни тысяч Десятки тысяч Тысячи Сотни Десятки Единицы
Цифра
(символ)
7 8 3 5 0 2 1 9 7 0 4 8
Название
класса
Миллиарды Миллионы Тысячи Единицы
Название разряда Сотни миллиардов Десятки миллиардов Миллиарды Сотни миллионов Десятки миллионов Миллионы Сотни тысяч Десятки тысяч Тысячи Сотни Десятки Единицы
Цифра
(символ)
7 8 3 5 0 2 1 9 7 0 4 8

C помощью таблицы разрядов прочитаем это число. Для этого надо слева направо по очереди называть количество единиц каждого класса и добавлять название класса.

Название класса единиц не произносят, также не произносят название класса, если все три цифры в его разрядах — нули.

Теперь прочтем число 783 502 197 048 из таблицы: 783 миллиарда 502 миллиона 197 тысяч 48 .

Любое натуральное число можно записать в виде разрядных слагаемых.

Числа 1, 10, 100, 1000 … называются разрядными единицами. С их помощью натуральное число записывается в виде разрядных слагаемых. Так, например, число 307 898 будет выглядеть в виде разрядных слагаемых.

307 898 = 300 000 + 7 000 + 800 + 90 + 8

Проверить свои вычисления вы можете с помощью нашего калькулятора разложения числа на разряды онлайн.

Следующие за миллиардом классы названы в соответствии с латинскими наименованиями чисел. Каждая следующая единица содержит тысячу предыдущих.

  • 1 000 миллиардов = 1 000 000 000 000 = 1 триллион («три» — по латыни «три»)
  • 1 000 триллионов = 1 000 000 000 000 000 = 1 квадриллион («квадра» — по латыни «четыре»)
  • 1 000 квадриллионов = 1 000 000 000 000 000 000 = 1 квинтиллион («квинта» — по латыни «пять»)

Все числа пересчитать невозможно, поскольку за каждым числом следует число на единицу большее, но очень большие числа в повседневной жизни не нужны.

Однако, физики нашли число, которое превосходит количество всех атомов (мельчайших частиц вещества) во всей Вселенной.

Это число получило специальное название — гугол. Гугол — число, у которого 100 нулей.

Источник статьи: http://math-prosto.ru/?page=pages/set-of-numbers/natural.php

Натуральные числа

Натуральные числа — это те числа, которые возникают при счете естественным путем. Например, 1, 2, 3, 4, . Особую позицию здесь занимает ноль. Согласно одному из подходов, натуральные числа появляются при подсчете предметов или их нумерации (первый, второй). Это традиционный поход и нулю в нем нет места. Но в некоторых областях математики 0 является натуральным числом.

Если все натуральные числа расположить в порядке возрастания, и каждое последующее число будет больше предыдущего на 1, то они образуют натуральный ряд . Такой ряд бесконечен, во множестве натуральных чисел N не существует самого большого числа.

Натуральными числами НЕ являются: отрицательные и нецелые числа.

Классы и разряды

Все натуральные числа делятся на классы и разряды. Наверняка, многие слышали такие страшные слова, как квинтиллионы, секстиллионы и даже септиллионы. Все это разрядные единицы многозначных чисел.

Классы – это группы цифр, на которые разбиваются многозначные числа. Разбиваются они справа налево, в каждом классе по 3 цифры. Каждая цифра в классе, так же справа налево, обозначает единицы, десятки или сотни. Классы имеют свое название, самый первый – класс единиц, второй – класс сотен, девятый – класс септиллионов.

Не каждый студент может себе позволить за семестр в ВУЗе отдать 100 000 ₽ . Но круто, что есть гранты на учебу. Грант-на-вуз.рф это возможность учиться на желанной специальности. По ссылке каждый получит бонус от 300 ₽ до 100 000 ₽ грант-на-вуз.рф

Все цифры в многозначном числе занимают свою позицию. Другими словами, имеют свой разряд , который считается справа налево.

Единицы, десятки, сотни и так далее – все они являются разрядными единицами и разделяются на простые (единицы первого разряда) и составные (остальные единицы, такие как десятки, сотни и др.) Десять единиц одного разряда будут составлять одну единицу следующего разряда. Так 10 сотен составят 1 тысячу и будут являться единицами низшего разряда по отношению к единице высшего разряда – тысячи.

Свойства

Существует ряд основных свойств , сформулированных еще в XIX в. математиком Д. Пеано:

  • Число 1 не следует ни за каким другим натуральным числом
  • За каждым натуральным числом следует только 1 натуральное число, с разницей в единицу.
  • Множество натуральных чисел содержит все натуральные числа, оно бесконечно и не имеет наибольшего числа.

На основе этих свойств выведены и другие:

  • При выполнении сложения и умножения натуральных чисел, результатом будет являться натуральное число.
  • Операции сложения и умножения следуют закону перестановочности (от перемены мест слагаемых/множителей, значение не меняется) и сочетательности (при прибавлении к одному числу суммы двух других чисел, сначала производится сложение одного числа, потом другого). Так же, умножение и деление подчиняются распределительному свойству , при котором a(b + c) = ab + ac, (a + b) : c = a:c + b:c.
  • a , при условии, что a стоит раньше b в ряду натуральных чисел. А так же, обязательно существования такого натурального числа с , чтобы a + c = b .
  • 2 натуральных числа ( a и b ) всегда находятся либо в соотношении a = b , либо a , либо b .
  • При a и b справедливо условие a .
  • Имея три натуральных числа a, b, c и зная, что a , можно утверждать, что a + c и ac .
  • Если a , и они являются натуральными числами, то будет верно неравенство b – a .

Напоминаем про сервис грант-на-вуз.рф . Не упусти свой шанс изучать то, что тебе нравится. Ну или просто сэкономить на учебе. Ты точно получишь от 300 ₽ до 100 000 ₽, перейдя по ссылке грант-на-вуз.рф !

Спасибо, что прочитали статью. Не забывайте про подписку на канал, а также рекомендую почитать канал наших друзей:

Источник статьи: http://zen.yandex.ru/media/studystudent/naturalnye-chisla-5e9f52a43fdcda291b799387


0 0 голоса
Article Rating
Подписаться
Уведомить о
guest

0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии