Меню Рубрики

Как написать механизм образования ковалентной связи

Механизмы образования ковалентной связи.

Химическая связь.

Разные вещества имеют различное строение. Из всех известных на сегодняшний день веществ только инертные газы существуют в виде свободных (изолированных) атомов, что обусловлено высокой устойчивостью их электронных структур. Все другие вещества (а их в настоящее время известно более 10 млн.) состоят из связанных атомов.

Примечание: курсивом выделены те части текста, которые можно не учить и не разбирать.

Образование молекул из атомов приводит к выигрышу энергии, так как в обычных условиях молекулярное состояние устойчивее, чем атомное.

У атома на внешнем энергетическом уровне может содержаться от одного до восьми электронов. Если число электронов на внешнем уровне атома максимальное, которое он может вместить, то такой уровень называется завершенным. Завершенные уровни ха­рактеризуются большой прочностью. Таковы внешние уровни атомов благородных газов: у гелия на внешнем уровне два электрона (s 2 ), у остальных — по восемь электронов (ns 2 np 6 ). Внешние уровни атомов других элементов незавершенные и в процессе химического взаимодействия они завершаются.

Химическая связь образуется за счет валентных электронов, но осуществляется она по-разному. Различают три основных типа химических связей: ковалентную, ионную и металлическую.

Ковалентная связь

Механизм возникновения ковалентной связи рассмотрим на примере образования молекулы водорода:

Ядро свободного атома водорода окружено сферически симметричным электронным облаком, образованным 1 s-электроном. При сближении атомов до определенного расстояния происходит частичное перекрывание их электронных облаков (орбиталей)

В результате между центрами обоих ядер возникает молекулярное двухэлектронное облако, обладающее максимальной электронной плотностью в пространстве между ядрами; увеличение же плотности отрицательного заряда благоприятствует сильному возрастанию сил притяжения между ядрами и молекулярным облаком.

Итак, ковалентная связь образуется в результате перекрывания электронных облаков атомов, сопровождающегося выделением энергии. Если у сблизившихся до касания атомов водорода расстояние между ядрами составляет 0,106 нм, то после перекрывания электронных облаков (образования молекулы Н2) это расстояние составляет 0,074 нм. Наибольшее перекрывание электронных облаков осуществляется вдоль линии, соединяющей ядра двух атомов (это происходит при образовании σ–связи). Химическая связь тем прочнее, чем больше перекрывание электронных орбиталей. В результате возникновения химической связи между двумя атомами водорода каждый из них достигает электронной конфигурации атома благородного газа гелия.

Изображать химические связи принято по-разному:

1) с помощью электронов в виде точек, поставленных у химического знака элемента. Тогда образование молекулы водорода можно показать схемой

2) часто, особенно в органической химии, ковалентную связь изображают черточкой (штрихом) (например, Н—Н), которая символизирует общую пару электронов.

Ковалентная связь в молекуле хлора также осуществляется с по­мощью двух общих электронов, или электронной пары:

Неподеленная пара электронов, в атоме их 3

← Неподеленная пара электронов,

неспаренный электрон общая или поделенная пара электронов

Как видно, каждый атом хлора имеет три неподеленные пары и один неспаренный электрон. Образование химической связи происходит за счет неспаренных электронов каждого атома. Неспаренные электроны связываются в общую пару электронов, называемую также поделенной парой.

Если между атомами возникла одна ковалентная связь (одна общая электронная пара), то она называется одинарной; если больше, то кратной двойной (две общие электронные пары), тройной (три общие электронные пары).

Одинарная связь изображается одной черточкой (штрихом), двойная — двумя, тройная — тремя. Черточка между двумя атомами показывает, что у них пара электронов обобщена, в результате чего и образовалась химическая связь. С помощью таких черточек изображают структурные формулы молекул.

Итак, в молекуле хлора каждый его атом имеет завершенный внешний уровень из восьми электронов (s 2 p 6 ), причем два из них (электронная пара) в одинаковой мере принадлежат обоим атомам. Перекрывание электронных орбиталей при образовании молекулы показано на рис:

В молекуле азота N2 атомы имеют три общие электронные пары:

Очевидно, молекула азота прочнее молекулы водорода или хлора, чем и обусловлена значительная инертность азота в химических реакциях.

Химическая связь, осуществляемая электронными парами, называется ковалентной.

Механизмы образования ковалентной связи.

Ковалентная связь образуется не только за счет перекрывания одноэлектронных облаков, — это обменный механизм образования ковалентной связи.

При обменном механизме атомы предоставляют в общее пользование одинаковое количество электронов.

Возможен и другой механизм ее образования — донорно-акцепторный. В этом случае химическая связь возникает за счет неподеленной электронной пары одного атома и свободной орбитали другого атома.

Рассмотрим в качестве примера механизм образования иона аммония NH4 +

При взаимодействии аммиака с НСl происходит химическая реакция:

NH3 + HCl = NH4Cl или в сокращенном ионном виде: NH3 + Н + = NH4 +

При этом в молекуле аммиака атом азота имеет неподеленную пару электронов ( двухэлектронное облако):

.

У иона водорода свободна (не заполнена) 1s-орбиталь, что можно обозначить как ?H +

При образовании иона аммония происходит перекрывание орбитали атома азота, занятой неподеленной электронной парой, с пустой орбиталью иона водорода (двухэлектронное облако азота становится общим для атомов азота и водорода, т.е. оно превращается в молекулярное электронное облако). А значит, возникает четвертая ковалентная связь. Процесс образования иона аммония можно представить схемой:

+ ?H + →

Заряд иона водорода становится общим (он делокализован, т.е. рассредоточен между всеми атомами), а двухэлектронное облако (неподеленная электронная пара), принадлежащее азоту, становится общим с водородом. В схемах изображение ячейки ? часто опускается.

Атом, предоставляющий неподеленную электронную пару, называется донором, а атом, принимающий ее (т.е. предоставляющий свободную орбиталь), называется акцептором.

Механизм образования ковалентной связи за счет двухэлектронного облака одного атома (донора) и свободной орбитали другого атома (акцептора) называется донорно-акцепторным. Образованная таким путем ковалентная связь называется донорно-акцепторной связью.

Однако это не особый вид связи, а лишь иной механизм (способ) образования ковалентной связи. По свойствам четвертая N—Н-связь в ионе аммония ничем не отличается от остальных трех.

Источник статьи: http://studopedia.ru/18_17240_mehanizmi-obrazovaniya-kovalentnoy-svyazi.html

Как написать механизм образования ковалентной связи

КОВАЛЕНТНАЯ СВЯЗЬ — это связь, возникающая между атомами за счет образования общих электронных пар (Например, H 2, HCl , H 2 O , O 2).

По степени смещенности общих электронных пар к одному из связанных ими атомов ковалентная связь может быть полярной и неполярной.

А) КОВАЛЕНТНАЯ НЕПОЛЯРНАЯ СВЯЗЬ (КНС) — образуют атомы одного и того же химического элемента — неметалла (Например, H 2, O 2, О3).

Механизм образования связи.

Каждый атом неметалла отдает в общее пользование другому атому наружные не спаренные электроны. Образуются общие электронные пары. Электронная пара принадлежит в равной мере обоим атомам.

Рассмотрим механизм образования молекулы хлора:

Электронная схема образования молекулы Cl 2:

Рассмотрим механизм образования молекулы кислорода:

Электронная схема образования молекулы О2:

Структурная формула молекулы О2:

В молекуле кратная, двойная связь:

Б) КОВАЛЕНТНАЯ ПОЛЯРНАЯ СВЯЗЬ (КПС) — образуют атомы разных неметаллов, отличающихся по значениям электроотрицательности (Например, HCl , H 2 O ) .

Встречаются исключения, когда ковалентную связь образуют атом неметалла и металла!

Например, AlCl 3, разница в электроотрицательности ∆ Э.О. ∆ Э.О. = 3,16 ( Cl ) – 1,61( Al ) = 1,55

Электроотрицательность (ЭО) — это свойство атомов одного элемента притягивать к себе электроны от атомов других элементов.

Самый электроотрицательный элемент – фтор F

Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют ряд электроотрицательности элементов, предложенный американским химиком Л. Полингом.

Таблица. Электроотрицательности ( ЭО ) некоторых элементов (приведены в порядке возрастания ЭО ).

Механизм образования связи.

Каждый атом неметалла отдает в общее пользование другому атому свои наружные не спаренные электроны. Образуются общие электронные пары. Общая электронная пара смещена к более электроотрицательному элементу.

Рассмотрим механизм образования молекулы хлороводорода:

Электронная схема образования молекулы Н Cl :

Структурная формула молекулы Н Cl :

— одинарная связь σ , смещение электронной плотности в сторону более электроотрицательного атома хлора ()

Свойства ковалентной связи

1) Длина – межъядерное расстояние

2) Энергия – энергия, выделяющаяся при образовании или поглощающаяся при разрыве химической связи.

С увеличением кратности связи энергия увеличивается, длина связи уменьшается и химическая активность падает:

по донорно-акцепторному механизму

3) Насыщаемость – определяется способностью атомов образовывать ограниченное число связей:

Например, водород всегда одновалентен;

азот может быть трехвалентен в молекуле аммиака NH 3 и четырёхвалентен в ионе аммония NH 4 + (валентные возможности расширяются за счёт участия неподелённой электронной пары атома азота в образовании ковалентной связи по донорно-акцепторному механизму).

4) Направленность* – обуславливает форму молекулы в пространстве.

* — подробнее будет изучено в старших классах. Ковалентная связь образуется в направлении максимального перекрывания электронных орбиталей взаимодействующих атомов при образовании σ – связей. (см. «гибридизация»)

Источник статьи: http://www.sites.google.com/site/himulacom/zvonok-na-urok/8-klass/urok-no51-cast-2-kovalentnaa-svaz-polarnaa-i-nepolarnaa-kovalentnye-svazi

Ковалентная связь — полярная и неполярная, механизмы образования

Ковалентная связь (от латинского «со» совместно и «vales» имеющий силу) осуществляется за счет электронной пары, принадлежащей обоим атомам. Образуется между атомами неметаллов.

Электроотрицательность неметаллов довольно велика, так что при химическом взаимодействии двух атомов неметаллов полный перенос электронов от одного к другому (как в случае ионной связи) невозможен. В этом случае для выполнения правила октета необходимо объединение электронов.

В качестве примера обсудим взаимодействие атомов водорода и хлора:

Cl 1s 2 2s 2 2p 6 3s 2 3p 5 — семь электронов на внешнем уровне

Каждому из двух атомов недостает по одному электрону для того, чтобы иметь завершенную внешнюю электронную оболочку. И каждый из атомов выделяет „в общее пользование” по одному электрону. Тем самым правило октета оказывается выполненным. Лучше всего изобра­жать это с помощью формул Льюиса:

Обобществленные электроны принадлежат теперь обоим атомам. Атом водорода имеет два электрона (свой собственный и обобществленный электрон атома хлора), а атом хлора — восемь электронов (свои плюс обобществленный электрон атома водорода). Эти два обобществленных электрона образуют ковалентную связь между атомами водорода и хло­ра. Образовавшаяся при связывании двух атомов частица называется молекулой.

Неполярная ковалентная связь

Ковалентная связь может образоваться и между двумя одинаковы­ми атомами. Например:

Эта схема объясняет, почему водород и хлор существуют в виде двухатомных молекул. Благодаря спариванию и обобществлению двух элек­тронов удается выполнить правило октета для обоих атомов.

Помимо одинарных связей может образовываться двойная или тройная ковалентная связь, как, например, в молекулах кислорода О2 или азота N2. Атомы азота имеют по пять валентных электронов, следовательно, для завершения оболочки требуется еще по три электро­на. Это достигается обобществлением трех пар электронов, как показано ниже:

Ковалентные соединения — обычно газы, жидкости или сравнитель­но низкоплавкие твердые вещества. Одним из редких исключений явля­ется алмаз, который плавится выше 3 500 °С. Это объясняется строением алмаза, который представляет собой сплошную решетку ковалентно связанных атомов углерода, а не совокупность отдельных молекул. Фак­тически любой кристалл алмаза, независимо от его размера, представля­ет собой одну огромную молекулу.

Ковалентная связь возникает при объединении электронов двух атомов неметаллов. Возникшая при этом структура называется молекулой.

Полярная ковалентная связь

В большинстве случаев два ковалентно связанных атома имеют раз­ную электроотрицательность и обобществленные электроны не принад­лежат двум атомам в равной степени. Большую часть времени они нахо­дятся ближе к одному атому, чем к другому. В молекуле хлороводорода, например, электроны, образующие ковалентную связь, располагаются ближе к атому хлора, поскольку его электроотрицательность выше, чем у водорода. Однако разница в способности притягивать электроны не столь велика, чтобы произошел полный перенос электрона с атома водо­рода на атом хлора. Поэтому связь между атомами водорода и хлора можно рассматривать как нечто среднее между ионной связью (полный перенос электрона) и неполярной ковалентной связью (симмет­ричное расположение пары электронов между двумя атомами). Частич­ный заряд на атомах обозначается греческой буквой δ. Такая связь называется полярной ковалентной связью, а о молеку­ле хлороводорода говорят, что она полярна, т. е. имеет положительно заряженный конец (атом водорода) и отрицательно заряженный конец (атом хлора).

В таблице ниже перечислены основные типы связей и примеры веществ:

Обменный и донорно-акцепторный механизм образования ковалентной связи

1) Обменный механизм. Каждый атом дает по одному неспаренному электрону в общую электронную пару.

2) Донорно-акцепторный механизм. Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь.

Источник статьи: http://himege.ru/covalent-bond/


0 0 голоса
Article Rating
Подписаться
Уведомить о
guest

0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии