Как определить формулу, которая задаёт график изображённой линейной функции вида y=kx+b?
(Задание подобного вида есть в ВПР по математике за 7 класс)
нужно взять на графике две любые точки (на практике удобно брать те, которые с удобными целыми координатами). Например, пусть по графику видно, что при x = x1, y = y1, при x = x2, y = y2. Две точки (x1,y1) и (x2,y2) подставляются в формулу линейной функции и получается система уравнений относительно k и b. y1 = k*x1 + b, y2 = k*x2 + b. сначалы вычитаем одно из другого и найдем k. k = (y2 — y1)/(x2 — x1). После этого несложно найти b = (y1*x2-y2*x1)/(x2-x1)
Найдите область определения функции y=1/4x-2?
Скорее всего имеется в виду функция y=1/(4x-2), тогда решение следующее:
Делить на ноль нельзя,поэтому найдем х, при которых знаменатель становится равным 0.
Для всех остальных х можно вычислить значение выражения y=1/(4x-2)
Как с математической, или физической точки зрения точно объяснить, почему любой лист бумаги нельзя сложить более 7 раз?
Можно и 8 раз и . Сложить можно. Только что. Вопрос неправильно поставлен. «. любой лист бумаги» — не корректное определение условий эксперимента. Так и понятие «сложить». Сложить — это уменьшение поверхности в 128 раз? — плёвое дело. «Бред сивого мерина в лунную ночь». Разводилово ещё есть?
Что человечеству дало доказательство гипотезы Пуанкаре?
Начнем с этого, что представляет собой гипотеза Пуанкаре. Ее определение звучит так: «Всякое замкнутое n-мерное многообразие гомотопически эквивалентно n-мерной сфере тогда и только тогда, когда оно гомеоморфно ей». Что это значит?
Представим себе шар из теста. При желании из него можно вылепить практически что угодно — фигурку животного, куб, трапецию или конус. Форм действительно очень много. В теперь возьмем бублик. Эта форма в математике называется «тор». Как бы вы ни старались, создать из тора шар или другой сплошной объект у вас не получится — отверстие никуда не денется. Собственно, сама гипотеза Пуанкаре состоит в том, что из фигуры можно сделать сферу, только если она не имеет форму тора.
Доказательство этой гипотезы российским математиком Григорием Перельманом привело к некоторым очень интересным выводам с точки зрения нашего понимания мира. Например, если эта гипотеза верна, соответсвенно, нашу Вселенную, представленную в виде сферы, можно свернуть в точку. Это, в свою очередь, значит, что теории Большого сжатия и Большого взрыва могут быть верны — доказанная гипотеза косвенно подтверждает их. Но это только один из эффектов доказанной «задачи тысячелетия». По мере совершенствования науки и техники мы несомненно найдем ей все больше применений.
Источник статьи: http://yandex.ru/q/question/hw.math/kak_opredelit_formulu_kotoraia_zadaiot_y_7dcfed02/
Линейная функция и ее график
Функция – правило, с помощью которого для каждого значения независимой переменной можно найти единственное значение зависимой переменной.
Для разных значений независимой переменной значения зависимой могут совпадать, но для одного и того же значения аргумента будет только одно значение функции!
Функции могут быть заданы таблично, графически и с помощью формулы.
График функции – это графическое выражение функциональной зависимости на координатной плоскости. По оси абсцисс – Ох – откладываются значения аргумента функции, а по оси ординат – Оу – значения функции.
Важный момент – это область определения и область значений функции. Область определений – это те значения, которые может принимать Х. Для многих функций – это все множество действительных чисел, но есть функции, например, обратная пропорциональность, логарифм, квадратный корень, когда область определения ограничена. Область значений – это то множество значений, которые принимать Y.
Самая простая функция – это линейная. Ее форма y(x)=kx+b, k – коэффициент, b – свободный член. График этой функции – прямая. Частный случай линейной функции – прямая пропорциональность – y(x)=kx, при этом b=0. Если же k=0, тогда имеем прямую, параллельную оси Ox, y(x)=b, хотя вне зависимости от х, значение функции не изменится.
Для линейной функции можно даже не строя график, определить как он будет выглядеть. Если k>0, функция возрастает, ее график будет иметь наклон вверх /. Если k
Если мы имеем дело с прямой пропорциональностью, то ее график пройдет через начало координат. Если же свободный член не равен нулю, то наша прямая сместится вверх, если b>0, или вниз, если b
Бывают ситуации, когда функция задана разными формулами для разных интервалов. Тогда ее график будет состоят из отдельных кусочков.
Для построения графика линейной функции достаточно найти координаты двух точек. Если b не равен нулю, то координаты первой точки (0; b), если b=0, то координаты первой точки (0; 0) — график пройдет через начало координат. Вторую точку находим, подставив вместо х конкретное значение, наиболее удобное для расчета.
Источник статьи: http://zen.yandex.ru/media/id/5e13897e34808200b16e2469/lineinaia-funkciia-i-ee-grafik-5e6777811dd12f5e5cee4f63
Алгебра. Урок 5. Графики функций
Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Графики функций”.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Декартова система координат
Система координат – это две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом отсчета для каждой из них.
Координатные оси – прямые, образующие систему координат.
Ось абсцисс (ось x ) – горизонтальная ось.
Ось ординат (ось y ) – вертикальная ось.
Функция
Функция – это отображение элементов множества X на множество Y . При этом каждому элементу x множества X соответствует одно единственное значение y множества Y .
Прямая
Линейная функция – функция вида y = a x + b где a и b – любые числа.
Графиком линейной функции является прямая линия.
Рассмотрим, как будет выглядеть график в зависимости от коэффициентов a и b :
Если a > 0 , прямая будет проходить через I и III координатные четверти.
b – точка пересечения прямой с осью y .
Если a 0 , прямая будет проходить через II и IV координатные четверти.
b – точка пересечения прямой с осью y .
Если a = 0 , функция принимает вид y = b .
Отдельно выделим график уравнения x = a .
Важно : это уравнение не является функцией так как нарушается определение функции ( функция ставит в соответствие каждому элементу x множества X одно единственно значение y множества Y ). Данное уравнение ставит в соответствие одному элементу x бесконечное множества элементов y . Тем не менее, график данного уравнения построить можно. Просто не будем называть его гордым словом «Функция».
Парабола
Графиком функции y = a x 2 + b x + c является парабола .
Для того, чтобы однозначно определить, как располагается график параболы на плоскости, нужно знать, на что влияют коэффициенты a , b , c :
- Коэффициент a указывает на то, куда направлены ветки параболы.
- Если a > 0 , ветки параболы направлены вверх.
- Если a 0 , ветки параболы направлены вниз.
- Коэффициент c указывает, в какой точке парабола пересекает ось y .
- Коэффициент b помогает найти x в – координату вершины параболы.
- Дискриминант позволяет определить, сколько точек пересечения у параболы с осью .
- Если D > 0 – две точки пересечения.
- Если D = 0 – одна точка пересечения.
- Если D 0 – нет точек пересечения.
Гипербола
Графиком функции y = k x является гипербола .
Характерная особенность гиперболы в том, что у неё есть асимптоты.
Асимптоты гиперболы – прямые, к которым она стремится, уходя в бесконечность.
Ось x – горизонтальная асимптота гиперболы
Ось y – вертикальная асимптота гиперболы.
На графике асимптоты отмечены зелёной пунктирной линией.
Если коэффициент k > 0 , то ветви гиперолы проходят через I и III четверти.
0″ height=»346″ width=»346″ sizes=»(max-width: 346px) 100vw, 346px» data-srcset=»/wp-content/uploads/2017/01/Гипербола-1.png 346w,/wp-content/uploads/2017/01/Гипербола-1-150×150.png 150w,/wp-content/uploads/2017/01/Гипербола-1-300×300.png 300w,/wp-content/uploads/2017/01/Гипербола-1-176×176.png 176w,/wp-content/uploads/2017/01/Гипербола-1-60×60.png 60w, https://epmat.ru/wp-content/uploads/2017/01/Гипербола-1.png»>
Если k 0, ветви гиперболы проходят через II и IV четверти.
Чем меньше абсолютная величина коэффиента k (коэффициент k без учета знака), тем ближе ветви гиперболы к осям x и y .
Квадратный корень
Функция y = x имеет следующий график:
Возрастающие/убывающие функции
Функция y = f ( x ) возрастает на интервале , если большему значению аргумента (большему значению x ) соответствует большее значение функции (большее значение y ) .
То есть чем больше (правее) икс, тем больше (выше) игрек. График поднимается вверх (смотрим слева направо)
Примеры возрастающих функций:
Функция y = f ( x ) убывает на интервале , если большему значению аргумента (большему значению x ) соответствует меньшее значение функции (большее значение y ) .
То есть чем больше (правее) икс, тем меньше (ниже) игрек. График опускается вниз (смотрим слева направо).
Примеры убывающих функций:
Для того, чтобы найти наибольшее значение функции , находим самую высокую точку на графике и смотрим, какая у нее координата по оси ординат (по оси y ) . Это значение и будет являться наибольшим значением функции.
Для того, чтобы найти наименьшее значение функции , находим самую нижнюю точку на графике и смотрим, какая у нее координата по оси ординат (по оси y ) . Это значение и будет являться наименьшим значением функции.
Задание №11 из ОГЭ 2020. Типовые задачи и принцип их решения.
Источник статьи: http://epmat.ru/modul-algebra/urok-5-grafiki-funktsij/
Линейная функция
Линейная функция — функция вида График линейной функции — прямая.
Для построения графика линейной функции достаточно двух точек — потому что через две несовпадающие точки всегда можно провести прямую, причем единственную.
Угловой коэффициент прямой
Величина k в формуле линейной функции называется угловым коэффициентом прямой
Если , линейная функция возрастает. Чем больше х, тем больше у, то есть график идет вправо и вверх.
Если , линейная функция убывает. Чем больше х, тем меньше у, то есть график идет вправо и вниз.
Угловой коэффициент k равен тангенсу угла наклона графика линейной функции к положительному направлению оси Х.
Пусть Чем больше k, тем круче вверх идет график функции.
А что же будет, если ? Мы получим горизонтальную прямую На рисунке показан график функции
Заметим, что прямая (также изображенная на рисунке) не является графиком функции в нашем обычном, школьном смысле слова. В самом деле — мы помним, что функция — это соответствие между двумя множествами, причем каждому элементу множества Х соответствует один и только один элемент множества Y.
Для прямой это не выполняется: значению соответствует бесконечно много значений у.
При этом, чем больше b, тем выше расположен на координатной плоскости график функции.
Например, прямые и параллельны. Их угловые коэффициенты равны.
Если прямые перпендикулярны. Например, прямые и пересекаются под прямым углом. Произведение их угловых коэффициентов равно — 1.
Построение графика линейной функции
График линейной функции построить легко — достаточно двух точек.
Оказывается, что привычный нам вид уравнения прямой — не единственно возможный.
Уравнение прямой можно записать также в виде
Построим, например, прямую, заданную уравнением
Значит, наша прямая проходит через точки и
Выразив у из уравнения , получим уравнение прямой вида
Если вы поступаете в вуз на специальность, связанную с математикой, — уже на первом курсе вы познакомитесь и с другими видами уравнения прямой.
Зачем изучать линейную функцию?
Дело в том, что многие зависимости в природе и технике описываются формулой виде
Например, закон Ома для участка цепи: Напряжение U прямо пропорционально силе тока I.
Формула для равномерного прямолинейного движения: . Пройденное расстояние S прямо пропорционально времени.
Закон теплового расширения , который вам встретится в одной из задач под номером 10 варианта Профильного ЕГЭ по математике — тоже линейная функция. И таких примеров можно привести очень много.
Обратите внимание, что в формулу линейной функции аргумент х входит в первой степени. Мы просто умножаем х на угловой коэффициент k и прибавляем b.
Если в формулу функции входит аргумент в любой другой степени — например, в квадрате или в кубе, если мы делим на х, если в формуле присутствует или , или показательные или логарифмические выражения, зависящие от х, — график функции уже не будет прямой линией.
Источник статьи: http://ege-study.ru/linejnaya-funkciya-1/
Линейная функция. Примеры решения задач (ЕГЭ – 2021)
Вот дурацкий пример, чтобы понять что такое функция.
Чтобы купить 1 айфон, нужно «развести» родителей на 70 тыс. рублей. (Разводить родителей не хорошо! Не делайте так никогда! 🙂 )
Количество айфонов, которые ты сможешь купить зависит от того, на сколько денег ты «разведешь» родителей.
Зависимость одной величины от другой математики называют ФУНКЦИЕЙ одной величины от другой.
Количество айфонов — это функция количества денег (иногда говорят «от количества денег).
Вес — это функция от съеденных круассанов. Чем меньше съел, тем меньше весишь.
Расстояние — это функция времени. Чем дольше ты будешь идти, тем больше пройдешь.
Ну а теперь перейдем к одному из видов функций – линейной функции.
Линейная функция
Но сначала официальное определение «Функции» – теперь ты его поймешь. Держи в уме: айфон – деньги, вес – круассаны, расстояние – время.
Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).
То есть, если у тебя есть функция \( y=f\left( x \right)\), это значит что каждому допустимому значению переменной \( x\) (которую называют «аргументом») соответствует одно значение переменной \( y\) (называемой «функцией»).
Все дело в понятии «область определения»: для некоторых функций не все аргументы «одинаково полезны» — не все можно подставить в зависимость.
Например, для функции \( y=\sqrt
Ну и вернемся, наконец, к теме данной статьи.
Линейной называется функция вида \( y=kx+b\), где \( k\) и \( b\) – любые числа (они называются коэффициентами).
Другими словами, линейная функция – это такая зависимость, что функция прямо пропорциональна аргументу.
Как думаешь, почему она называется линейной?
Все просто: потому что графиком этой функции является прямая линия. Но об этом чуть позже.
Как уже говорилось в теме «Функции», важнейшими понятиями, связанными с любой функцией, являются ее область определения \( D\left( y \right)\) и область значений \( E\left( y \right)\).
Область определения линейной функции
Какими могут быть значения аргумента линейной функции \( y=kx+b\)? Правильно, любыми. Это значит, что область определения – все действительные числа:
или \( D\left( y \right)=\left( -\infty ;+\infty \right)\).
Область значений линейной функции
Тут тоже все просто: поскольку функция прямо пропорциональна аргументу, то чем больше аргумент \( x\), тем больше значение функции \( y\).
Значит, \( y\) так же как и \( x\) может принимать все возможные значения, то есть \( E\left( y \right)=\mathbb
Верно, да не всегда. Есть такие линейные функции, которые не могут принимать любые значения. Как думаешь, в каком случае возникают ограничения?
Вспомним формулу: \( y=kx+b\). Какие нужно выбрать коэффициенты \( k\) и \( b\), чтобы значение функции y не зависело от аргумента \( x\)?
А вот какие: \( b\) – любое, но \( k=0\). И правда, каким бы ни был аргумент \( x\), при умножении на \( k=0\) получится \( 0\)!
Тогда функция станет равна \( y=0\cdot x+b=b\), то есть она принимает одно и то же значение при всех \( x\):
\( y = kx + b:<\rm< >>\left[ \begin
Теперь рассмотрим несколько задач на линейную функцию.
Три задачи на линейную функцию
Решение задачи №1
Пусть начальное значение аргумента равно некому числу \( <
Чему была равна функция до увеличения? Подставляем аргумент в формулу:
После увеличения: \( <
Функция увеличилась на \( 4\). Как это записать на «математическом языке» (в виде уравнения)?
Изменение – это разность конечного и начального значений. Значит, нужно из конечного значения функции \( y\) вычесть начальное:
Решение задачи №2
Аналогично предыдущей задаче:
Начальное значение аргумента равно \( <
Начальное значение функции: \( <
В этот раз функция не увеличилась, а уменьшилась. Это значит, что конечное значение будет меньше начального, а значит, изменение (разность конечного и начального) будет отрицательным:
Определение прямой пропорциональной зависимости
Если проанализировать решения этих двух задач, можно прийти к важному выводу.
При изменении аргумента линейной функции на \( \Delta x\) функция изменяется на \( k\cdot \Delta x\). То есть изменение функции всегда ровно в \( \mathbf
\) раз больше изменения аргумента.
По сути это является определением прямой пропорциональной зависимости.
Решение задачи №3
Подставим известные значения аргумента и функции в формулу \( y=kx+b\):
Получили два уравнения относительно \( k\) и \( b\). Теперь достаточно решить систему этих двух уравнений:
Вычтем из первого уравнения второе:
\( 1-\left( -1 \right)=3k+b-\left( 5k+b \right)\text< >\Leftrightarrow \text< >2=-2k\text< >\Rightarrow \text< >k=-1\)
Подставим найденное значение k в первое уравнение:
\( 1=3\cdot \left( -1 \right)+b\text< >\Rightarrow \text< >b=4\)
Ответ: \( -1;\text< >4.\)
График линейной функции
Как я уже упоминал ранее, график такой функции – прямая линия.
Как известно из геометрии, прямую можно провести через две точки (то есть, если известны две точки, принадлежащие прямой, этого достаточно, чтобы ее начертить).
Предположим, у нас есть функция линейная функция \( y=2x+1\). Чтобы построить ее график, нужно вычислить координаты любых двух точек.
То есть нужно взять любые два значения аргумента \( x\) и вычислить соответствующие два значения функции.
Затем для каждой пары \( \left( x;y \right)\) найдем точку в системе координат, и проведем прямую через эти две точки.
Проще всего найти функцию, если аргумент \( x=0:y\left( 0 \right)=2\cdot 0+1=1\).
Итак, первая точка имеет координаты \( \left( 0;1 \right)\).
Теперь возьмем любое другое число в качестве \( x\), например, \( x=1:y\left( 1 \right)=2\cdot 1+1=3\).
Вторая точка имеет координаты \( \left( 1;3 \right)\).
Ставим эти две точки на координатной плоскости:
Теперь прикладываем линейку, и проводим прямую через эти две точки:
Вот и все, график построен!
Давай теперь на этом же рисунке построим еще два графика: \( y=
Построй их самостоятельно так же: посчитай значение y для любых двух значений \( x\), отметь эти точки на рисунке и проведи через них прямую.
Видно, что все три прямые по-разному наклонены и в разных точках пересекают координатные оси. Все дело тут в коэффициентах \( \displaystyle k\) и \( \displaystyle b\).
Давай разберемся, на что они влияют.
Коэффициенты линейной функции
Для начала выясним, что делает коэффициент \( \displaystyle b\). Рассмотрим функцию \( \displaystyle y=x+b\), то есть \( \displaystyle k=1\).
Меняя \( \displaystyle b\) будем следить, что происходит с графиком.
Итак, начертим графики для разных значений \( \displaystyle b:b=-2,\text< ->1,\text< >0,\text< >1,\text< >2\):
Что ты можешь сказать о них? Чем отличаются графики? Это сразу видно: чем больше \( \displaystyle b\), тем выше располагается прямая.
Более того, заметь такую вещь: график пересекает ось \( \displaystyle \mathbf
И правда. Как найти точку пересечения графика с осью \( \displaystyle y\)? Чему равен \( \displaystyle x\) в такой точке?
В любой точке оси ординат (это название оси \( \displaystyle y\), если ты забыл) \( \displaystyle x=0\).
Значит достаточно подставить \( \displaystyle x=0\) в функцию, и получим ординату пересечения графика с осью \( \displaystyle y\):
Теперь по поводу \( \displaystyle k\). Рассмотрим функцию \( \displaystyle \left( b=0 \right).\) Будем менять \( \displaystyle k\) и смотреть, что происходит с графиком.
Построим графики для \( \displaystyle k=-3,\text< ->1,\text< >0,\text< >1,\text< >2:\)
Так, теперь ясно: \( \displaystyle k\) влияет на наклон графика.
Чем больше \( \displaystyle k\) по модулю (то есть несмотря на знак), тем «круче» (под большим углом к оси абсцисс – \( \displaystyle Ox\)) расположена прямая.
Если \( \displaystyle k>0\), график наклонен «вправо», при \( \displaystyle k
Выберем на графике две точки \( \displaystyle A\) и \( \displaystyle B\). Для простоты выберем точку \( \displaystyle A\) на пересечении графика с осью ординат. Точка \( \displaystyle B\) – в произвольном месте прямой, пусть ее координаты равны \( \displaystyle \left( x;y \right)\).
Рассмотрим прямоугольный треугольник \( \displaystyle ABC\), построенный на отрезке \( \displaystyle AB\) как на гипотенузе.
Из рисунка видно, что \( \displaystyle AC=x\), \( \displaystyle BC=y-b\).
Подставим \( \displaystyle y=kx+b\) в \( \displaystyle BC:BC=y-b=kx+b-b=kx\).
Получается, что \( BC = k \cdot AC<\rm< >> \Rightarrow <\rm< >>k = \frac<
Итак, коэффициент \( \displaystyle k\) равен тангенсу угла наклона графика, то есть угла между графиком и осью абсциссс.
Именно поэтому его (коэффициент \( \displaystyle k\)) обычно называют угловым коэффициентом.
В случае, когда \( k
Если же \( \displaystyle k=0\), тогда и \( <\mathop<\rm tg>\nolimits> \alpha = 0,\) следовательно \( \displaystyle \alpha =0\), то есть прямая параллельна оси абсцисс.
Понимать геометрическое значение коэффициентов очень важно, оно часто используется в различных задачах на линейную функцию.
Разбор еще 3-х задач на линейную функцию
1. Найдите коэффициенты \( \displaystyle k\) и \( \displaystyle b\) линейной функции, график которой приведен на рисунке. Запишите уравнение этой функции.
2. Найдите коэффициенты \( \displaystyle k\) и \( \displaystyle b\) линейной функции, график которой приведен на рисунке. Запишите уравнение этой функции.
3. График какой из функций изображен на рисунке?
Решение задачи №1
Коэффициент \( b\) найти проще простого – это ведь точка пересечения графика с осью \( \displaystyle Oy\):
Угловой коэффициент \( \displaystyle k\) – это тангенс угла наклона прямой.
Для его нахождения выберем две точки \( \displaystyle A\) и \( \displaystyle B\) на графике и построим прямоугольный треугольник с гипотенузой \( \displaystyle AB\):
Теперь можно составить уравнение этой прямой:
Решение задачи №2
Все аналогично предыдущей задаче.
Поскольку график наклонен «влево», угол между ним и осью абсцисс тупой, а значит, угловой коэффициент отрицательный.
Чтобы было проще найти тангенс угла наклона \( \alpha \), рассмотрим смежный с ним угол \( \beta \).
Тангенсы смежных углов равны по модулю, и противоположны по знаку:
Уравнение этой прямой выглядит так:
Решение задачи №3
И снова в первую очередь смотрим на \( \displaystyle b:b=3\). Значит, есть смысл рассматривать только функции a), b) и d).
Теперь посмотрим, каким должен быть угловой коэффициент?
Во-первых, он должен быть отрицательным, значит, выбрасываем ответ b). Остается a) и d).
Чтобы выбрать из них, придется найти тангенс угла наклона графика:
Отлично, значит уравнение этой прямой выглядит так:
То есть правильный ответ: a.
Точка пересечения графика с осью ординат – это коэффициент \( b\). А что можно сказать про точку пересечения с осью абсцисс?
В случае пересечения с осью \( Oy\) координата \( x=0\). При пересечении оси \( Ox\) – аналогично, координата \( y=0\):
Да это же простое линейное уравнение!
И действительно, такое линейное уравнение говорит нам, при каких значениях аргумента \( x\) функция \( y=0\), то есть корни такого уравнения – это координаты точек пересечения графика функции с осью абсцисс.
Это справедливо, кстати, для любой функции/уравнения.
Например, корни квадратного уравнения – это точки пересечения графика квадратичной функции – параболы – с осью \( Ox\).
Но подробнее об этом ты узнаешь в темах «Квадратные уравнения» и «Квадратичная функция».
КОРОТКО О ГЛАВНОМ
Линейная функция – это функция вида \( y=kx+b\), где \( k\) и \( b\) – любые числа (коэффициенты).
Рассмотрим, как коэффициенты влияют на месторасположение графика:
Общие варианты представлены на рисунке:
P.S. Последний бесценный совет 🙂
Ну вот, тема закончена. Если ты читаешь эти строки, значит, ты очень крут.
Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, ты попал в эти 5%!
Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.
Проблема в том, что этого может не хватить…
Для успешной сдачи ОГЭ или ЕГЭ, для поступления в 10 класс или в институт на бюджет и, самое главное, для жизни.
Я не буду тебя ни в чем убеждать, просто скажу одну вещь…
Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.
Главное то, что они более счастливы (есть такие исследования). Возможно, потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…
Что нужно, чтобы быть наверняка лучше других на ОГЭ или ЕГЭ и быть в конечном итоге… более счастливым?
Набить руку, решая задачи.
На экзамене у тебя не будут спрашивать теорию.
Тебе нужно будет решать задачи на время. И, если ты не решал их (много!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь. Это как в спорте: нужно много раз повторить, чтобы выиграть наверняка.
Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!
Можешь воспользоваться нашим сборником задач с подробным разбором, и мы их всячески рекомендуем, потому что они разбиты по темам, по типам и даже собраны в целую программу подготовки.
Если решишь набить руку с помощью наших задач, зайди на сайт 100gia и приобрети одну из программ.
А еще можешь зарегистрироваться и получить доступ к огромному количеству бесплатных материалов, видеоуроков, тестов.
Источник статьи: http://youclever.org/book/linejnaya-funktsiya-1/